[Triviality of reduced Whitehead groups with applications to weak approximation and strong approximation]
Nous prouvons certains résultats de trivialité pour des groupes de Whitehead réduits et groupes de Whitehead unitaires réduits pour des algèbres à division sur un corps de valuation discrète hensélien dont le corps résiduel a dimension cohomologique virtuelle ou séparable $\le 2$. Ces résultats sont appliqués pour démontrer l’approximation forte pour des groupes simplement connexes absolument presque simples isotropes de type A. Comme cas particulier, un tel groupe défini sur le corps des fonctions d’une courbe non réelle $C/k$ vérifie l’approximation forte si le corps de base $k$ est un corps de nombres, un corps $p$-adique, $\mathbb{C}(\!(t)\!)$ ou un corps de fonctions à deux variables sur $\mathbb{R}$.
We prove some triviality results for reduced Whitehead groups and reduced unitary Whitehead groups for division algebras over a Henselian discrete valuation field whose residue field has virtual cohomological dimension or separable dimension $\le 2$. These results are applied to show strong approximation for isotropic absolutely almost simple simply connected groups of type A. In particular, such a group defined over the function field of a nonreal curve $C/k$ satisfies strong approximation if the base field $k$ is a number field, a $p$-adic field, $\mathbb{C}(\!(t)\!)$ or a two-variable function field over $\mathbb{R}$.
Revised:
Accepted:
Published online:
Mots-clés : Groupe de Whitehead réduit, groupe de Whitehead unitaire, algèbre à division sur un corps hensélien, approximation faible, approximation forte, groupes simplement connexes
Keywords: Reduced Whitehead group, unitary Whitehead group, division algebra over a Henselian field, weak approximation, strong approximation, simply connected groups
Yong Hu 1; Yisheng Tian 2

@article{CRMATH_2025__363_G5_465_0, author = {Yong Hu and Yisheng Tian}, title = {Trivialit\'e des groupes de {Whitehead} r\'eduits avec applications \`a l{\textquoteright}approximation faible et l{\textquoteright}approximation forte}, journal = {Comptes Rendus. Math\'ematique}, pages = {465--477}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.705}, language = {fr}, }
TY - JOUR AU - Yong Hu AU - Yisheng Tian TI - Trivialité des groupes de Whitehead réduits avec applications à l’approximation faible et l’approximation forte JO - Comptes Rendus. Mathématique PY - 2025 SP - 465 EP - 477 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.705 LA - fr ID - CRMATH_2025__363_G5_465_0 ER -
%0 Journal Article %A Yong Hu %A Yisheng Tian %T Trivialité des groupes de Whitehead réduits avec applications à l’approximation faible et l’approximation forte %J Comptes Rendus. Mathématique %D 2025 %P 465-477 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.705 %G fr %F CRMATH_2025__363_G5_465_0
Yong Hu; Yisheng Tian. Trivialité des groupes de Whitehead réduits avec applications à l’approximation faible et l’approximation forte. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 465-477. doi : 10.5802/crmath.705. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.705/
[1] Classical groups and the Hasse principle, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 651-693 | DOI | MR | Zbl
[2] The period-index problem for real surfaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 130 (2019), pp. 63-110 | DOI | MR | Zbl
[3] -equivalence and special unitary groups, J. Algebra, Volume 209 (1998) no. 1, pp. 175-198 | DOI | MR
[4] Quelques résultats de finitude pour le groupe d’une algèbre de biquaternions, -Theory, Volume 10 (1996) no. 1, pp. 31-48 | DOI | MR | Zbl
[5] Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J., Volume 121 (2004) no. 2, pp. 285-341 | DOI | MR | Zbl
[6] Skew fields, London Mathematical Society Lecture Note Series, 81, Cambridge University Press, 1983, ix+182 pages | DOI | MR
[7] Valuations, orderings, and Milnor -theory, Mathematical Surveys and Monographs, 124, American Mathematical Society, 2006, xiv+288 pages | DOI | MR
[8] Henselian valuations of division rings and the group , Mat. Sb., N. Ser., Volume 117(159) (1982) no. 1, pp. 60-68 | MR
[9] Invariants cohomologiques de Rost en caractéristique positive, -Theory, Volume 21 (2000) no. 1, pp. 57-100 | DOI | MR | Zbl
[10] Le problème de Kneser–Tits, Séminaire Bourbaki. Volume 2007/2008. Exposés 982–996 (Astérisque), 2009 no. 326, pp. 39-81 | Numdam | MR | Zbl
[11] Groupes algébriques semi-simples en dimension cohomologique 2, Lecture Notes in Mathematics, 2238, Springer, 2019, xxii+167 pages | DOI | MR
[12] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 165, Cambridge University Press, 2017, xi+417 pages | DOI | MR
[13] On the triviality of certain Whitehead groups, Math. Proc. R. Ir. Acad., Volume 107 (2007) no. 2, pp. 183-193 | DOI | MR | Zbl
[14] A cohomological Hasse principle over two-dimensional local rings, Int. Math. Res. Not. (2017) no. 14, pp. 4369-4397 | DOI | MR | Zbl
[15] Strong approximation and Hasse principle for integral quadratic forms over affine curves, Acta Arith., Volume 216 (2024) no. 3, pp. 277-289 | DOI | MR | Zbl
[16] Division algebras over Henselian fields, J. Algebra, Volume 128 (1990) no. 1, pp. 126-179 | DOI | MR | Zbl
[17] The book of involutions, Colloquium Publications, 44, American Mathematical Society, 1998, xxii+593 pages | DOI | MR
[18] Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, 2005, xxii+550 pages | MR
[19] Norms in fields of real algebraic functions and the reduced Whitehead group, Dokl. Akad. Nauk BSSR, Volume 26 (1982) no. 7, pp. 585-588 | MR | Zbl
[20] Certain -cohomology groups of Severi–Brauer varieties, -theory and algebraic geometry : connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) (Proceedings of Symposia in Pure Mathematics), American Mathematical Society, 1995 no. 58, part 2, pp. 319-331 | DOI | MR | Zbl
[21] Invariants of algebraic groups, J. Reine Angew. Math., Volume 508 (1999), pp. 127-156 | DOI | MR | Zbl
[22] -cohomology of Severi–Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982) no. 5, pp. 1011-1046 | MR
[23] Period-index and u-invariant questions for function fields over complete discretely valued fields, Invent. Math., Volume 197 (2014) no. 1, pp. 215-235 | DOI | MR | Zbl
[24] The structure of unitary groups and of the commutants of a simple algebra over global fields, Dokl. Akad. Nauk SSSR, Volume 208 (1973), pp. 541-544 | MR
[25] Division algebras over -adic curves, J. Ramanujan Math. Soc., Volume 12 (1997) no. 1, pp. 25-47 | MR | Zbl
[26] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages | DOI | MR
[27] Cohomologie galoisienne, Lecture Notes in Mathematics, 5, Springer, 1994, x+181 pages | DOI | MR
[28] On triviality of the reduced Whitehead group over Henselian fields, Arch. Math., Volume 113 (2019) no. 3, pp. 237-245 | DOI | Zbl
[29] of division algebras and Galois cohomology revisited, Proceedings of the St. Petersburg Mathematical Society. Vol. XII (American Mathematical Society Translations, Series 2), American Mathematical Society, 2006 no. 219, pp. 125-147 | DOI | Zbl
[30] Value functions on simple algebras, and associated graded rings, Springer Monographs in Mathematics, Springer, 2015, xvi+643 pages | DOI | MR | Zbl
[31] The structure of a unitary factor group, Publ. Math., Inst. Hautes Étud. Sci. (1959) no. 1, pp. 7-23 | DOI | Numdam | MR | Zbl
[32] On the commutator group of a simple algebra, Am. J. Math., Volume 72 (1950), pp. 323-334 | DOI | MR | Zbl
[33] Simple algebras with involutions, and unitary groups, Mat. Sb., N. Ser., Volume 93 (1974) no. 135, pp. 368-380 | MR
[34] Reduced unitary -theory and division algebras over Henselian discretely valued fields, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 42 (1978) no. 4, pp. 879-918 | MR | Zbl
[35] Whitehead groups and groups of -equivalence classes of linear algebraic groups of non-commutative classical type over some virtual fields, Algebraic groups and arithmetic, Tata Institute of Fundamental Research, 2004, pp. 491-505 | MR | Zbl
Cited by Sources:
Comments - Policy