This paper is concerned with possibly sign-changing solutions to the critical $p$-Laplace equation $-\Delta _p u = \vert {x}\vert ^\alpha \vert {u}\vert ^{p^*_\alpha -2}u$ in $\Omega $, $u=0$ on $\partial \Omega $, where $1<p<N$, $\alpha >-p$, $p^*_\alpha =\frac{(N+\alpha )p}{N-p}$, and $\Omega $ is a bounded or unbounded domain of $\smash{\mathbb{R}^N}$. We first derive a Liouville type theorem on half-spaces. Then we classify solutions via the radial symmetry and Morse index. Moreover, we characterize the compactness of radial Palais–Smale sequences on radial domains.
Cet article s’intéresse aux solutions de l’équation critique de p-Laplace qui peuvent changer de signe. $-\Delta _p u = \vert {x}\vert ^\alpha \vert {u}\vert ^{p^*_\alpha -2}u$ dans $\Omega $, $u=0$ sur $\partial \Omega $, où $1<p<N$, $\alpha >-p$, $p^*_\alpha =\frac{(N+\alpha )p}{N-p}$, et $\Omega $ est un domaine borné ou non de $\smash{\mathbb{R}^N}$. Nous dérivons d’abord un théorème de type Liouville sur les demi-espaces. Ensuite, nous classons les solutions en fonction de la symétrie radiale et de l’indice de Morse. De plus, nous caractérisons la compacité des suites de Palais–Smale radiales sur les domaines radiaux.
Accepted:
Published online:
Keywords: $p$-Laplace equations, Hardy–Hénon exponents, Liouville theorems, Palais–Smale sequences
Mots-clés : Équations de $p$-Laplace, exposants de Hardy–Hénon, théorèmes de Liouville, suites de Palais–Smale
Diem Hang T. Le 1, 2; Phuong Le 3, 4

@article{CRMATH_2025__363_G6_571_0, author = {Diem Hang T. Le and Phuong Le}, title = {Liouville theorems for $p${-Laplace} equations with critical {Hardy{\textendash}H\'enon} exponents}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--582}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.710}, language = {en}, }
TY - JOUR AU - Diem Hang T. Le AU - Phuong Le TI - Liouville theorems for $p$-Laplace equations with critical Hardy–Hénon exponents JO - Comptes Rendus. Mathématique PY - 2025 SP - 571 EP - 582 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.710 LA - en ID - CRMATH_2025__363_G6_571_0 ER -
Diem Hang T. Le; Phuong Le. Liouville theorems for $p$-Laplace equations with critical Hardy–Hénon exponents. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 571-582. doi : 10.5802/crmath.710. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.710/
[1] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | Numdam | MR | Zbl
[2] On the best constant for a weighted Sobolev–Hardy inequality, J. Lond. Math. Soc. (2), Volume 48 (1993) no. 1, pp. 137-151 | DOI | MR | Zbl
[3] Symmetry for positive critical points of Caffarelli–Kohn–Nirenberg inequalities, Nonlinear Anal., Theory Methods Appl., Volume 216 (2022), 112683, 23 pages | DOI | MR | Zbl
[4] Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differ. Equations, Volume 261 (2016) no. 6, pp. 3042-3060 | DOI | MR | Zbl
[5] Entire nodal solutions to the pure critical exponent problem for the -Laplacian, J. Differ. Equations, Volume 265 (2018) no. 3, pp. 891-905 | DOI | MR | Zbl
[6] Topologie et cas limite des injections de Sobolev, C. R. Math., Volume 299 (1984) no. 7, pp. 209-212 | MR | Zbl
[7] Liouville results for -Laplace equations of Lane–Emden–Fowler type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 4, pp. 1099-1119 | DOI | MR | Zbl
[8] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 7 (1983) no. 8, pp. 827-850 | DOI | MR
[9] On a conformally invariant elliptic equation on , Commun. Math. Phys., Volume 107 (1986) no. 2, pp. 331-335 | MR | Zbl
[10] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. R. Soc. Edinb., Sect. A, Math., Volume 93 (1982/83) no. 1-2, pp. 1-14 | DOI | MR | Zbl
[11] On the classification of solutions of the Lane–Emden equation on unbounded domains of , J. Math. Pures Appl. (9), Volume 87 (2007) no. 5, pp. 537-561 | DOI | MR | Zbl
[12] A Liouville theorem for the -Laplacian and related questions, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 4, 153, 13 pages | DOI | MR | Zbl
[13] Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc., Volume 352 (2000) no. 12, pp. 5703-5743 | DOI | MR | Zbl
[14] Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 879-902 | DOI | MR | Zbl
[15] Classification of positive solutions to -Laplace equations with critical Hardy–Sobolev exponent, Nonlinear Anal., Real World Appl., Volume 74 (2023), 103949, 13 pages | DOI | MR | Zbl
[16] Global compactness results for quasilinear elliptic problems with combined critical Sobolev–Hardy terms, Nonlinear Anal., Theory Methods Appl., Volume 74 (2011) no. 4, pp. 1445-1464 | DOI | MR | Zbl
[17] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 12 (1988) no. 11, pp. 1203-1219 | DOI | MR | Zbl
[18] On Coron’s problem for the -Laplacian, J. Math. Anal. Appl., Volume 421 (2015) no. 1, pp. 362-369 | DOI | MR | Zbl
[19] A global compactness result for the -Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 2, pp. 469-493 | DOI | MR | Zbl
[20] A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., Volume 31 (1982) no. 6, pp. 801-807 | DOI | MR | Zbl
[21] Large energy entire solutions for the Yamabe equation, J. Differ. Equations, Volume 251 (2011) no. 9, pp. 2568-2597 | DOI | MR | Zbl
[22] Existence, non-existence and regularity of radial ground states for -Laplacian equations with singular weights, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 3, pp. 505-537 | DOI | Numdam | MR | Zbl
[23] Sharp pointwise estimates for weighted critical -Laplace equations, Nonlinear Anal., Theory Methods Appl., Volume 206 (2021), 112236, 18 pages | DOI | MR | Zbl
[24] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), Volume 110 (1976), pp. 353-372 | DOI | MR | Zbl
[25] Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, Volume 51 (1984) no. 1, pp. 126-150 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy