Comptes Rendus
Research article - Functional analysis
Operator algebraic characterization of the noncommutative Poisson boundary
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 199-204.

We obtain an operator algebraic characterization of the noncommutative Furstenberg–Poisson boundary $\mathrm{L}(\Gamma ) \subset \mathrm{L}(\Gamma \curvearrowright B)$ associated with an admissible probability measure $\mu \in \mathrm{Prob}(\Gamma )$ for which the $(\Gamma , \mu )$-Furstenberg–Poisson boundary $(B, \nu _B)$ is uniquely $\mu $-stationary. This is a noncommutative generalization of Nevo–Sageev’s structure theorem [14]. We apply this result in combination with previous works to provide further evidence towards Connes’ rigidity conjecture for higher rank lattices.

Nous obtenons une caractérisation en algèbres opérateurs de la frontière de Furstenberg–Poisson noncommutative $\mathrm{L}(\Gamma ) \subset \mathrm{L}(\Gamma \curvearrowright B)$ associée à une mesure de probabilité admissible $\mu \in \mathrm{Prob}(\Gamma )$ pour laquelle la $(\Gamma , \mu )$-frontière de Furstenberg–Poisson $(B, \nu _B)$ est uniquement $\mu $-stationnaire. Il s’agit d’une généralisation noncommutative du théorème de structure de Nevo–Sageev [14]. Nous appliquons ce résultat en combinaison avec des travaux antérieurs pour fournir des pistes supplémentaires afin de résoudre la conjecture de rigidité de Connes pour les réseaux de rang supérieur.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.715
Classification: 20G25, 22D25, 46L10, 46L55
Keywords: Connes’ rigidity conjecture, higher rank lattices, noncommutative Furstenberg–Poisson boundaries, von Neumann algebras
Mots-clés : Conjecture de rigidité de Connes, réseaux de rang supérieur, frontières de Furstenberg–Poisson noncommutatives, algèbres de von Neumann

Cyril Houdayer 1

1 École Normale Supérieure, Département de Mathématiques et Applications, Université Paris-Saclay, 45 rue d’Ulm, 75230 Paris Cedex 05, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G2_199_0,
     author = {Cyril Houdayer},
     title = {Operator algebraic characterization of the noncommutative {Poisson} boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {199--204},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.715},
     language = {en},
}
TY  - JOUR
AU  - Cyril Houdayer
TI  - Operator algebraic characterization of the noncommutative Poisson boundary
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 199
EP  - 204
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.715
LA  - en
ID  - CRMATH_2025__363_G2_199_0
ER  - 
%0 Journal Article
%A Cyril Houdayer
%T Operator algebraic characterization of the noncommutative Poisson boundary
%J Comptes Rendus. Mathématique
%D 2025
%P 199-204
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.715
%G en
%F CRMATH_2025__363_G2_199_0
Cyril Houdayer. Operator algebraic characterization of the noncommutative Poisson boundary. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 199-204. doi : 10.5802/crmath.715. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.715/

[1] Clair Anantharaman; Sorin Popa An introduction to II 1 factors (2014) https://www.math.ucla.edu/~popa/books/iiunv15.pdf

[2] Uri Bader; Rémi Boutonnet; Cyril Houdayer; Jesse Peterson Charmenability of arithmetic groups of product type, Invent. Math., Volume 229 (2022) no. 3, pp. 929-985 | DOI | MR | Zbl

[3] Uri Bader; Yehuda Shalom Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006) no. 2, pp. 415-454 | DOI | MR | Zbl

[4] Rémi Boutonnet; Cyril Houdayer The noncommutative factor theorem for lattices in product groups, J. Éc. Polytech., Math., Volume 10 (2023), pp. 513-524 | DOI | MR | Zbl

[5] Sayan Das; Jesse Peterson Poisson boundaries of II 1 factors, Compos. Math., Volume 158 (2022) no. 8, pp. 1746-1776 | DOI | MR | Zbl

[6] Harry Furstenberg A Poisson formula for semi-simple Lie groups, Ann. Math. (2), Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl

[7] Harry Furstenberg Poisson boundaries and envelopes of discrete groups, Bull. Am. Math. Soc., Volume 73 (1967), pp. 350-356 | DOI | MR | Zbl

[8] Ilya Ya. Goldsheid; Grigoriĭ Aleksandrovich Margulis Lyapunov exponents of a product of random matrices, Russ. Math. Surv., Volume 44 (1989) no. 5, pp. 11-71 | DOI | MR

[9] Yair Hartman; Mehrdad Kalantar Tight inclusions of C * -dynamical systems, Groups Geom. Dyn., Volume 18 (2024) no. 1, pp. 67-90 | DOI | MR | Zbl

[10] Cyril Houdayer Noncommutative ergodic theory of higher rank lattices, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, European Mathematical Society, 2023, pp. 3202-3223 | DOI | MR | Zbl

[11] Masaki Izumi Non-commutative Poisson boundaries, Discrete geometric analysis (Contemporary Mathematics), Volume 347, American Mathematical Society, 2004, pp. 69-81 | DOI | MR | Zbl

[12] Vadim A. Kaimanovich; Anatoliĭ Moiseevich Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl

[13] Grigoriĭ Aleksandrovich Margulis Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR

[14] Amos Nevo; Michah Sageev The Poisson boundary of CAT (0) cube complex groups, Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 653-695 | DOI | MR | Zbl

[15] Shuoxing Zhou Noncommutative Poisson boundaries, ultraproducts, and entropy, Int. Math. Res. Not., Volume 2024 (2024) no. 10, pp. 8794-8818 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy