We obtain an operator algebraic characterization of the noncommutative Furstenberg–Poisson boundary $\mathrm{L}(\Gamma ) \subset \mathrm{L}(\Gamma \curvearrowright B)$ associated with an admissible probability measure $\mu \in \mathrm{Prob}(\Gamma )$ for which the $(\Gamma , \mu )$-Furstenberg–Poisson boundary $(B, \nu _B)$ is uniquely $\mu $-stationary. This is a noncommutative generalization of Nevo–Sageev’s structure theorem [14]. We apply this result in combination with previous works to provide further evidence towards Connes’ rigidity conjecture for higher rank lattices.
Nous obtenons une caractérisation en algèbres opérateurs de la frontière de Furstenberg–Poisson noncommutative $\mathrm{L}(\Gamma ) \subset \mathrm{L}(\Gamma \curvearrowright B)$ associée à une mesure de probabilité admissible $\mu \in \mathrm{Prob}(\Gamma )$ pour laquelle la $(\Gamma , \mu )$-frontière de Furstenberg–Poisson $(B, \nu _B)$ est uniquement $\mu $-stationnaire. Il s’agit d’une généralisation noncommutative du théorème de structure de Nevo–Sageev [14]. Nous appliquons ce résultat en combinaison avec des travaux antérieurs pour fournir des pistes supplémentaires afin de résoudre la conjecture de rigidité de Connes pour les réseaux de rang supérieur.
Accepted:
Published online:
Keywords: Connes’ rigidity conjecture, higher rank lattices, noncommutative Furstenberg–Poisson boundaries, von Neumann algebras
Mots-clés : Conjecture de rigidité de Connes, réseaux de rang supérieur, frontières de Furstenberg–Poisson noncommutatives, algèbres de von Neumann
Cyril Houdayer 1

@article{CRMATH_2025__363_G2_199_0, author = {Cyril Houdayer}, title = {Operator algebraic characterization of the noncommutative {Poisson} boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--204}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.715}, language = {en}, }
Cyril Houdayer. Operator algebraic characterization of the noncommutative Poisson boundary. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 199-204. doi : 10.5802/crmath.715. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.715/
[1] An introduction to factors (2014) https://www.math.ucla.edu/~popa/books/iiunv15.pdf
[2] Charmenability of arithmetic groups of product type, Invent. Math., Volume 229 (2022) no. 3, pp. 929-985 | DOI | MR | Zbl
[3] Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006) no. 2, pp. 415-454 | DOI | MR | Zbl
[4] The noncommutative factor theorem for lattices in product groups, J. Éc. Polytech., Math., Volume 10 (2023), pp. 513-524 | DOI | MR | Zbl
[5] Poisson boundaries of factors, Compos. Math., Volume 158 (2022) no. 8, pp. 1746-1776 | DOI | MR | Zbl
[6] A Poisson formula for semi-simple Lie groups, Ann. Math. (2), Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl
[7] Poisson boundaries and envelopes of discrete groups, Bull. Am. Math. Soc., Volume 73 (1967), pp. 350-356 | DOI | MR | Zbl
[8] Lyapunov exponents of a product of random matrices, Russ. Math. Surv., Volume 44 (1989) no. 5, pp. 11-71 | DOI | MR
[9] Tight inclusions of -dynamical systems, Groups Geom. Dyn., Volume 18 (2024) no. 1, pp. 67-90 | DOI | MR | Zbl
[10] Noncommutative ergodic theory of higher rank lattices, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, European Mathematical Society, 2023, pp. 3202-3223 | DOI | MR | Zbl
[11] Non-commutative Poisson boundaries, Discrete geometric analysis (Contemporary Mathematics), Volume 347, American Mathematical Society, 2004, pp. 69-81 | DOI | MR | Zbl
[12] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl
[13] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR
[14] The Poisson boundary of cube complex groups, Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 653-695 | DOI | MR | Zbl
[15] Noncommutative Poisson boundaries, ultraproducts, and entropy, Int. Math. Res. Not., Volume 2024 (2024) no. 10, pp. 8794-8818 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy