In this paper, we establish the uniqueness of positive solutions to the following fractional nonlinear elliptic equation with harmonic potential:
\begin{equation*} (-\Delta )^s u+ \bigl (\omega +\vert {x}\vert ^2\bigr ) u=\vert u\vert ^{p-2}u \quad \text{ in } \mathbb{R}^n, \end{equation*} |
where $n \ge 1$, $0<s<1$, $\omega >-\lambda _{1,s}$, $2<p<\frac{2n}{(n-2s)^+}$, and $\lambda _{1,s}>0$ is the lowest eigenvalue of the operator $(-\Delta )^s + \vert x\vert ^2$. This solves an open question raised in [15] concerning the uniqueness of solutions to the equation.
Dans cet article, nous établissons l’unicité des solutions positives pour l’équation elliptique non linéaire fractionnaire suivante avec potentiel harmonique :
\begin{equation*} (-\Delta )^s u+ \bigl (\omega +\vert {x}\vert ^2\bigr ) u=\vert u\vert ^{p-2}u \quad \text{ in } \mathbb{R}^n, \end{equation*} |
où $n \ge 1$, $0<s<1$, $\omega >-\lambda _{1,s}$, $2<p<\frac{2n}{(n-2s)^+}$ et $\lambda _{1,s}>0$ est la plus petite valeur propre de l’opérateur $(-\Delta )^s + \vert x\vert ^2$. Cela résout une question ouverte soulevée dans [15] concernant l’unicité des solutions de cette équation.
Accepted:
Published online:
Keywords: Uniqueness, positive solutions, harmonic potential, fractional elliptic equations
Mots-clés : Unicité, solutions positives, potentiel harmonique, équations elliptiques fractionnaires
Tianxiang Gou 1; Vicenţiu D. Rădulescu 2, 3, 4, 5

@article{CRMATH_2025__363_G4_353_0, author = {Tianxiang Gou and Vicen\c{t}iu D. R\u{a}dulescu}, title = {Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential}, journal = {Comptes Rendus. Math\'ematique}, pages = {353--363}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.716}, language = {en}, }
TY - JOUR AU - Tianxiang Gou AU - Vicenţiu D. Rădulescu TI - Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential JO - Comptes Rendus. Mathématique PY - 2025 SP - 353 EP - 363 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.716 LA - en ID - CRMATH_2025__363_G4_353_0 ER -
%0 Journal Article %A Tianxiang Gou %A Vicenţiu D. Rădulescu %T Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential %J Comptes Rendus. Mathématique %D 2025 %P 353-363 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.716 %G en %F CRMATH_2025__363_G4_353_0
Tianxiang Gou; Vicenţiu D. Rădulescu. Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 353-363. doi : 10.5802/crmath.716. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.716/
[1] Uniqueness and related analytic properties for the Benjamin–Ono equation—a nonlinear Neumann problem in the plane, Acta Math., Volume 167 (1991) no. 1-2, pp. 107-126 | DOI | MR | Zbl
[2] Nonradiality of second eigenfunctions of the fractional Laplacian in a ball, Proc. Am. Math. Soc., Volume 150 (2022) no. 12, pp. 5335-5348 | DOI | MR | Zbl
[3] A general rearrangement inequality à la Hardy–Littlewood, J. Inequal. Appl., Volume 5 (2000) no. 4, pp. 309-320 | DOI | MR | Zbl
[4] Uniqueness and nondegeneracy of positive solutions of in when is close to 1, Commun. Math. Phys., Volume 329 (2014) no. 1, pp. 383-404 | DOI | MR | Zbl
[5] Nondegeneracy properties and uniqueness of positive solutions to a class of fractional semilinear equations (2024) | arXiv
[6] Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb., Sect. A, Math., Volume 142 (2012) no. 6, pp. 1237-1262 | DOI | MR | Zbl
[7] Uniqueness of non-linear ground states for fractional Laplacians in , Acta Math., Volume 210 (2013) no. 2, pp. 261-318 | DOI | MR | Zbl
[8] Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., Volume 69 (2016) no. 9, pp. 1671-1726 | DOI | MR | Zbl
[9] Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential, Proc. R. Soc. Edinb., Sect. A, Math. (2024), p. 1–14 | DOI
[10] Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differ. Equations, Volume 178 (2002) no. 2, pp. 519-540 | DOI | MR | Zbl
[11] Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkc. Ekvacioj, Volume 50 (2007) no. 1, pp. 67-100 | DOI | MR | Zbl
[12] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal., Volume 105 (1989) no. 3, pp. 243-266 | DOI | MR | Zbl
[13] Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, Volume 268 (2000) no. 4-6, pp. 298-305 | DOI | MR | Zbl
[14] Fractional Schrödinger equation, Phys. Rev. E (3), Volume 66 (2002) no. 5, 056108, 7 pages | DOI | MR
[15] Ground states for the nonlinear Schrödinger equation under a general trapping potential, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 671-697 | DOI | MR | Zbl
[16] Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996, x+162 pages | DOI | MR | Zbl
[17] Pohozaev identity and its applications, RIMS Kokyuroku, Volume 834 (1993), pp. 80-90 | MR
Cited by Sources:
Comments - Policy