We characterize the continuous semi-groups on $L^1(\mathbb{R})$ which coincide with a scalar conservation law $\rho _t+(f(\rho ))_x=0$ in $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ and are $L^1$-contracting. In a symmetric way, we characterize the continuous semi-groups on $W^{1,\infty }(\mathbb{R})$ which coincide with a Hamilton–Jacobi equation $u_t+H(u_x)=0$ in $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ and are $L^\infty $-contracting. These questions appear in traffic flow models for instance.
Nous caractérisons les semi-groupes continus sur $L^1(\mathbb{R})$ qui coïncident avec une loi de conservation scalaire $\rho _t+(f(\rho ))_x=0$ dans $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ et sont $L^1$-contractants. De façon symétrique, nous caractérisons les semi-groupes sur $W^{1,\infty }(\mathbb{R})$ qui coïncident avec l’équation Hamilton–Jacobi $u_t+H(u_x)=0$ dans $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ et sont $L^\infty $-contractants. Ces équations apparaissent notamment dans des modèles de trafic.
Revised:
Accepted:
Published online:
Mots-clés : Lois de conservation scalaire, modèles de trafic, équations de Hamilton–Jacobi, limiteur de flux, flux discontinus
Pierre Cardaliaguet 1
CC-BY 4.0
@article{CRMATH_2025__363_G5_499_0,
author = {Pierre Cardaliaguet},
title = {A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and {Hamilton{\textendash}Jacobi} equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {499--510},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.727},
language = {en},
}
TY - JOUR AU - Pierre Cardaliaguet TI - A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations JO - Comptes Rendus. Mathématique PY - 2025 SP - 499 EP - 510 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.727 LA - en ID - CRMATH_2025__363_G5_499_0 ER -
%0 Journal Article %A Pierre Cardaliaguet %T A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations %J Comptes Rendus. Mathématique %D 2025 %P 499-510 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.727 %G en %F CRMATH_2025__363_G5_499_0
Pierre Cardaliaguet. A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 499-510. doi: 10.5802/crmath.727
[1] Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 84-115 | DOI | MR | Zbl
[2] A theory of -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 27-86 | Zbl | DOI | MR
[3] Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. R. Soc. Edinb., Sect. A, Math., Volume 135 (2005) no. 2, pp. 253-265 | DOI | MR | Zbl
[4] Well-posedness for a class of conservation laws with data, J. Differ. Equations, Volume 140 (1997) no. 1, pp. 161-185 | DOI | MR | Zbl
[5] An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1684-1712 | DOI | MR | Zbl
[6] Conservation law and Hamilton–Jacobi equations on a junction: the convex case (2024) | HAL
[7] A class of germs arising from homogenization in traffic flow on junctions (2023) (To appear in J. Hyperbolic Differ. Equ.) | arXiv
[8] Some relations between nonexpansive and order preserving mappings, Proc. Am. Math. Soc., Volume 78 (1980) no. 3, pp. 385-390 | DOI | MR | Zbl
[9] Germs for scalar conservation laws: the Hamilton–Jacobi equation point of view (2024) | arXiv
[10] Conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 2 (2007) no. 1, pp. 159-179 | DOI | MR | Zbl
[11] Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017) no. 2, pp. 357-448 | DOI | MR | Numdam | Zbl
[12] Strictly convex Hamilton–Jacobi equations: strong trace of the gradient (2023) | HAL
[13] Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 4, pp. 729-770 | DOI | MR | Zbl
[14] Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 681-698 | DOI | MR | Zbl
[15] A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1197-1218 | DOI | MR | Zbl
[16] Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 3, pp. 181-193 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy
