Comptes Rendus
Research article - Partial differential equations
A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 499-510

We characterize the continuous semi-groups on $L^1(\mathbb{R})$ which coincide with a scalar conservation law $\rho _t+(f(\rho ))_x=0$ in $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ and are $L^1$-contracting. In a symmetric way, we characterize the continuous semi-groups on $W^{1,\infty }(\mathbb{R})$ which coincide with a Hamilton–Jacobi equation $u_t+H(u_x)=0$ in $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ and are $L^\infty $-contracting. These questions appear in traffic flow models for instance.

Nous caractérisons les semi-groupes continus sur $L^1(\mathbb{R})$ qui coïncident avec une loi de conservation scalaire $\rho _t+(f(\rho ))_x=0$ dans $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ et sont $L^1$-contractants. De façon symétrique, nous caractérisons les semi-groupes sur $W^{1,\infty }(\mathbb{R})$ qui coïncident avec l’équation Hamilton–Jacobi $u_t+H(u_x)=0$ dans $\mathbb{R}_+\times (\mathbb{R}\setminus \lbrace 0\rbrace )$ et sont $L^\infty $-contractants. Ces équations apparaissent notamment dans des modèles de trafic.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.727
Keywords: Scalar conservation laws, traffic flow models, Hamilton–Jacobi equations, flux limiter, discontinuous fluxes
Mots-clés : Lois de conservation scalaire, modèles de trafic, équations de Hamilton–Jacobi, limiteur de flux, flux discontinus

Pierre Cardaliaguet 1

1 Université Paris-Dauphine, PSL Research University, Ceremade, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G5_499_0,
     author = {Pierre Cardaliaguet},
     title = {A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and {Hamilton{\textendash}Jacobi} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {499--510},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.727},
     language = {en},
}
TY  - JOUR
AU  - Pierre Cardaliaguet
TI  - A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 499
EP  - 510
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.727
LA  - en
ID  - CRMATH_2025__363_G5_499_0
ER  - 
%0 Journal Article
%A Pierre Cardaliaguet
%T A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations
%J Comptes Rendus. Mathématique
%D 2025
%P 499-510
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.727
%G en
%F CRMATH_2025__363_G5_499_0
Pierre Cardaliaguet. A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 499-510. doi: 10.5802/crmath.727

[1] A. Adimurthi; Rajib Dutta; Shyam Sundar Ghoshal; G. D. Veerappa Gowda Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 84-115 | DOI | MR | Zbl

[2] Boris Andreianov; Kenneth Hvistendahl Karlsen; Nils Henrik Risebro A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 27-86 | Zbl | DOI | MR

[3] Emmanuel Audusse; Benoît Perthame Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. R. Soc. Edinb., Sect. A, Math., Volume 135 (2005) no. 2, pp. 253-265 | DOI | MR | Zbl

[4] Paolo Baiti; Helge Kristian Jenssen Well-posedness for a class of 2×2 conservation laws with L data, J. Differ. Equations, Volume 140 (1997) no. 1, pp. 161-185 | DOI | MR | Zbl

[5] Raimund Bürger; Kenneth Hvistendahl Karlsen; John D. Towers An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1684-1712 | DOI | MR | Zbl

[6] Pierre Cardaliaguet; Nicolas Forcadel; Theo Girard; Régis Monneau Conservation law and Hamilton–Jacobi equations on a junction: the convex case (2024) | HAL

[7] Pierre Cardaliaguet; Nicolas Forcadel; Régis Monneau A class of germs arising from homogenization in traffic flow on junctions (2023) (To appear in J. Hyperbolic Differ. Equ.) | arXiv

[8] Michael G. Crandall; Luc Tartar Some relations between nonexpansive and order preserving mappings, Proc. Am. Math. Soc., Volume 78 (1980) no. 3, pp. 385-390 | DOI | MR | Zbl

[9] Nicolas Forcadel; Cyril Imbert; Régis Monneau Germs for scalar conservation laws: the Hamilton–Jacobi equation point of view (2024) | arXiv

[10] Mauro Garavello; Roberto Natalini; Benedetto Piccoli; Andrea Terracina Conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 2 (2007) no. 1, pp. 159-179 | DOI | MR | Zbl

[11] Cyril Imbert; Régis Monneau Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017) no. 2, pp. 357-448 | DOI | MR | Numdam | Zbl

[12] Régis Monneau Strictly convex Hamilton–Jacobi equations: strong trace of the gradient (2023) | HAL

[13] Evgueni Yu. Panov Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 4, pp. 729-770 | DOI | MR | Zbl

[14] John D. Towers Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 681-698 | DOI | MR | Zbl

[15] John D. Towers A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1197-1218 | DOI | MR | Zbl

[16] Alexis Vasseur Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 3, pp. 181-193 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy