H. Glöckner and G. A. Willis have recently shown [2] that locally pro-$p$ contraction groups are nilpotent. The proof hinges on a fixed point result [2, Theorem B]: if the local field $\mathbb{F}_{p}(\!(t)\!)$ acts on its $d$-th power $\mathbb{F}_{p}(\!(t)\!)^{d}$ additively, continuously, and in an appropriately equivariant manner, then the action has a non-zero fixed point. We provide a short proof of this theorem.
H. Glöckner et G. A. Willis ont récemment démontré [2] que les groupes de contraction localement pro-$p$ sont nilpotents. Leur démonstration repose sur un résultat de point fixe [2, Theorem B] : si le corps local $\mathbb{F}_{p}(\!(t)\!)$ agit sur sa $d$-ième puissance $\mathbb{F}_{p}(\!(t)\!)^{d}$ additivement, continûment et de manière convenablement équivariante, alors l’action a un point fixe non nul. Nous présentons une démonstration courte de ce théorème.
Revised:
Accepted:
Published online:
Alonso Beaumont 1

@article{CRMATH_2025__363_G3_267_0, author = {Alonso Beaumont}, title = {On the nilpotency of locally pro-$p$ contraction groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {267--270}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.728}, language = {en}, }
Alonso Beaumont. On the nilpotency of locally pro-$p$ contraction groups. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 267-270. doi : 10.5802/crmath.728. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.728/
[1] Classification of the simple factors appearing in composition series of totally disconnected contraction groups, J. Reine Angew. Math., Volume 2010 (2010) no. 643, pp. 141-169 | MR | Zbl
[2] Locally pro- contraction groups are nilpotent, J. Reine Angew. Math., Volume 781 (2021), pp. 85-103 | DOI | MR | Zbl
[3] Topology, Pearson Education, 2014, i+503 pages
[4] Finiteness of the injective hull, Math. Z., Volume 70 (1958), pp. 372-380 | DOI | MR | Zbl
[5] Contractive automorphisms on locally compact groups, Math. Z., Volume 191 (1986), pp. 73-90 | DOI | MR | Zbl
[6] Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society, 2006, x+302 pages | DOI | MR
Cited by Sources:
Comments - Policy