We consider entire solutions $\omega \in \dot{H}^1(\mathbb{R}^2;\mathbb{R}^3)$ of the $H$-system
\begin{equation*} \Delta \omega =2\omega _x\wedge \omega _y\, \end{equation*} |
which we refer to as bubbles. Surprisingly, and contrary to conjectures raised in the literature, we find that bubbles with degree at least three can be degenerate: the linearized $H$-system around a bubble can admit solutions that are not tangent to the smooth family of bubbles. We then give a complete algebraic characterization of degenerate bubbles.
Nous considérons des solutions entières $\omega \in \dot{H}^1(\mathbb{R}^2;\mathbb{R}^3)$ du $H$-système
\begin{equation*} \Delta \omega =2\omega _x\wedge \omega _y, \end{equation*} |
appelées bulles. De manière surprenante, et contrairement à des conjectures exprimées dans la littérature, nous montrons que les bulles de degré au moins trois peuvent être dégénérées : le $H$-système linéarisé autour d’une bulle peut admettre des solutions qui ne soient pas tangentes à la famille lisse des bulles. Nous donnons de plus une caractérisation algébrique complète des bulles dégénérées.
Revised:
Accepted:
Published online:
Keywords: $H$-system, harmonic maps, conformal maps
Mots-clés : $H$-système, applications harmoniques, applications conformes
André Guerra 1; Xavier Lamy 2; Konstantinos Zemas 3

@article{CRMATH_2025__363_G3_271_0, author = {Andr\'e Guerra and Xavier Lamy and Konstantinos Zemas}, title = {On the existence of degenerate solutions of the two-dimensional $H$-system}, journal = {Comptes Rendus. Math\'ematique}, pages = {271--281}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.731}, language = {en}, }
TY - JOUR AU - André Guerra AU - Xavier Lamy AU - Konstantinos Zemas TI - On the existence of degenerate solutions of the two-dimensional $H$-system JO - Comptes Rendus. Mathématique PY - 2025 SP - 271 EP - 281 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.731 LA - en ID - CRMATH_2025__363_G3_271_0 ER -
André Guerra; Xavier Lamy; Konstantinos Zemas. On the existence of degenerate solutions of the two-dimensional $H$-system. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 271-281. doi : 10.5802/crmath.731. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.731/
[1] Convergence of solutions of -systems or how to blow bubbles, Arch. Ration. Mech. Anal., Volume 89 (1985) no. 1, pp. 21-56 | DOI | MR | Zbl
[2] -bubbles in a perturbative setting: the finite-dimensional reduction method, Duke Math. J., Volume 122 (2004) no. 3, pp. 457-484 | DOI | MR | Zbl
[3] Existence of -bubbles in a perturbative setting, Rev. Mat. Iberoam., Volume 20 (2004) no. 2, pp. 611-626 | DOI | MR | Zbl
[4] The Dirichlet problem for -systems with small boundary data: blowup phenomena and nonexistence results, Arch. Ration. Mech. Anal., Volume 181 (2006) no. 1, pp. 1-42 | DOI | MR | Zbl
[5] Asymptotic Morse theory for the equation , Commun. Anal. Geom., Volume 13 (2005) no. 1, pp. 187-251 | DOI | MR | Zbl
[6] Gauss parametrizations and rigidity aspects of submanifolds, J. Differ. Geom., Volume 22 (1985) no. 1, pp. 1-12 | DOI | MR | Zbl
[7] Minimal deformation of a non-full minimal surface in , Compos. Math., Volume 90 (1994) no. 2, pp. 183-209 | Numdam | MR | Zbl
[8] The boundary of the space of full harmonic maps of into and extra eigenfunctions, Jpn. J. Math., New Ser., Volume 24 (1998) no. 1, pp. 83-121 | DOI | MR | Zbl
[9] Minimal surfaces in with extra eigenfunctions, Q. J. Math., Oxf. II. Ser., Volume 43 (1992) no. 172, pp. 421-440 | DOI | MR | Zbl
[10] Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48 | DOI | MR | Zbl
[11] Degenerate stability of some Sobolev inequalities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 39 (2023) no. 6, pp. 1459-1484 | DOI | MR | Zbl
[12] Degenerate stability of the Caffarelli–Kohn–Nirenberg inequality along the Felli–Schneider curve, Calc. Var. Partial Differ. Equ., Volume 63 (2024) no. 2, 44, 33 pages | DOI | MR | Zbl
[13] The rate of convergence of a harmonic map at a singular point, Math. Ann., Volume 283 (1989) no. 4, pp. 539-549 | DOI | MR | Zbl
[14] On the asymptotic analysis of -systems. I. Asymptotic behavior of large solutions, Adv. Differ. Equ., Volume 6 (2001) no. 5, pp. 513-546 | DOI | MR | Zbl
[15] On the asymptotic analysis of -systems. II. The construction of large solutions, Adv. Differ. Equ., Volume 6 (2001) no. 6, pp. 641-700 | DOI | MR | Zbl
[16] Harmonic 2-spheres with pairs of extra eigenfunctions, Proc. Am. Math. Soc., Volume 125 (1997) no. 7, pp. 2083-2092 | DOI | MR | Zbl
[17] Jacobi fields along harmonic 2-spheres in 3- and 4-spheres are not all integrable, Tôhoku Math. J., Volume 61 (2009) no. 2, pp. 165-204 | DOI | MR | Zbl
[18] Łojasiewicz inequalities near simple bubble trees, Am. J. Math., Volume 146 (2024) no. 5, pp. 1361-1397 | DOI | MR | Zbl
[19] Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) (Lecture Notes in Mathematics), Volume 1481, Springer, 1991, pp. 147-174 | DOI | MR | Zbl
[20] The role of the spectrum of the Laplace operator on in the bubble problem, J. Anal. Math., Volume 94 (2004), pp. 265-291 | DOI | MR | Zbl
[21] Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537 | DOI | MR | Zbl
[22] Theorems on regularity and singularity of energy minimizing maps. Based on lecture notes by Norbert Hungerbühler, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1996, viii+152 pages | DOI | MR | Zbl
[23] Finite-time singularity formation for the heat flow of the -system (2023) | arXiv
[24] Large -surfaces via the mountain-pass-lemma, Math. Ann., Volume 270 (1985), pp. 441-459 | DOI | MR | Zbl
[25] Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 34, Springer, 2008, xx+302 pages | MR | Zbl
[26] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969) no. 2, pp. 318-344 | DOI | Zbl
Cited by Sources:
Comments - Policy