Comptes Rendus
Research article - Algebra, Number theory
Normal points on Artin–Schreier curves over finite fields
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 541-554.

In 2022, S. D. Cohen and the two authors introduced and studied the concept of $(r, n)$-freeness on finite cyclic groups $G$ for suitable integers $r$, $n$, which is an arithmetic way of capturing elements of special forms that lie in the subgroups of $G$. Combining this machinery with some character sum techniques, they explored the existence of points $(x_0, y_0)$ on affine curves $y^n=f(x)$ defined over a finite field $\mathbb{F}$ whose coordinates are generators of the multiplicative cyclic group $\mathbb{F}^*$. In this paper we develop the natural additive counterpart of this work for finite fields. Namely, any finite extension $\mathbb{E}$ of a finite field $\mathbb{F}$ with $Q$ elements is a cyclic $\mathbb{F}[x]$-module induced by the Frobenius automorphism $\alpha \mapsto \alpha ^{Q}$, and any generator of this module is said to be a normal element over $\mathbb{F}$. We introduce and study the concept of $(f, g)$-freeness on this module structure for suitable polynomials $f, g\in \mathbb{F}[x]$. As a main application of the machinery developed in this paper, we study the existence of $\mathbb{F}_{p^n}$-rational points in the Artin–Schreier curve $\mathfrak{A}_f : y^p-y=f(x)$ whose coordinates are normal over the prime field $\mathbb{F}_p$ and establish concrete results.

En 2022, S. D. Cohen et les deux auteurs ont introduit et étudié le concept de $(r, n)$-liberté dans les groupes cycliques finis $G$ pour des entiers convenables $r$ et $n$. Ce concept constitue une approche arithmétique permettant de capturer des éléments de formes spéciales qui appartiennent aux sous-groupes de $G$. En combinant cet outil avec certaines techniques de sommes de caractères, ils ont exploré l’existence de points $(x_0, y_0)$ sur des courbes affines de la forme $y^p-y=f(x)$, définies sur un corps fini $\mathbb{F}$, dont les coordonnées sont des générateurs du groupe cyclique multiplicatif $\mathbb{F}^*$. Dans cet article, nous développons le pendant additif naturel de ce travail pour les corps finis. Plus précisément, toute extension finie $\mathbb{E}$ d’un corps fini $\mathbb{F}$ à $Q$ éléments est un module cyclique sur $\mathbb{F}[x]$, induit par l’automorphisme de Frobenius $\alpha \mapsto \alpha ^{Q}$, et tout générateur de ce module est appelé un élément normal sur $\mathbb{F}$. Nous introduisons et étudions le concept de $(f, g)$-liberté dans cette structure de module pour des polynômes convenables $f$ et $g$ dans $\mathbb{F}[x]$. Comme principale application de la théorie développée dans cet article, nous examinons l’existence de points rationnels sur $\mathbb{F}_{p^n}$ dans la courbe d’Artin–Schreier $\mathfrak{A}_f : y^p-y=f(x)$, dont les coordonnées sont normales sur le corps premier $\mathbb{F}_p$, et nous établissons des résultats concrets.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.740
Classification: 11T30, 11T06, 11T23
Keywords: Finite fields, character sums, normal elements, free elements, Artin–Schreier curves
Mots-clés : Corps finis, sommes de caractères, éléments normaux, éléments libres, courbes d’Artin–Schreier

Giorgos Kapetanakis 1; Lucas Reis 2

1 Department of Mathematics, University of Thessaly, 3rd km Old National Road Lamia–Athens, 35100, Lamia, Greece
2 Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte MG, Brazil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G6_541_0,
     author = {Giorgos Kapetanakis and Lucas Reis},
     title = {Normal points on {Artin{\textendash}Schreier} curves over finite fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {541--554},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.740},
     language = {en},
}
TY  - JOUR
AU  - Giorgos Kapetanakis
AU  - Lucas Reis
TI  - Normal points on Artin–Schreier curves over finite fields
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 541
EP  - 554
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.740
LA  - en
ID  - CRMATH_2025__363_G6_541_0
ER  - 
%0 Journal Article
%A Giorgos Kapetanakis
%A Lucas Reis
%T Normal points on Artin–Schreier curves over finite fields
%J Comptes Rendus. Mathématique
%D 2025
%P 541-554
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.740
%G en
%F CRMATH_2025__363_G6_541_0
Giorgos Kapetanakis; Lucas Reis. Normal points on Artin–Schreier curves over finite fields. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 541-554. doi : 10.5802/crmath.740. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.740/

[1] Josimar J. R. Aguirre; Victor Gonzalo Neumann Existence of primitive 2-normal elements in finite fields, Finite Fields Appl., Volume 73 (2021), 101864, 26 pages | DOI | MR | Zbl

[2] Geoff Bailey; Stephen D. Cohen; Nicole Sutherland; Tim Trudgian Existence results for primitive elements in cubic and quartic extensions of a finite field, Math. Comput., Volume 88 (2019) no. 316, pp. 931-947 | DOI | MR | Zbl

[3] Andrew R. Booker; Stephen D. Cohen; Nicol Leong; Tim Trudgian Primitive element pairs with a prescribed trace in the cubic extension of a finite field, Bull. Aust. Math. Soc., Volume 106 (2022) no. 3, pp. 458-462 | DOI | MR | Zbl

[4] Stephen D. Cohen; Sophie Huczynska The primitive normal basis theorem—without a computer, J. Lond. Math. Soc. (2), Volume 67 (2003) no. 1, pp. 41-56 | DOI | MR | Zbl

[5] Stephen D. Cohen; Giorgos Kapetanakis; Lucas Reis The existence of 𝔽 q -primitive points on curves using freeness, C. R. Math., Volume 360 (2022), pp. 641-652 | DOI | MR | Zbl

[6] Whitfield Diffie; Martin E. Hellman New directions in cryptography, IEEE Trans. Inf. Theory, Volume 22 (1976) no. 6, pp. 644-654 | DOI | MR | Zbl

[7] Shuhong Gao Normal basis over finite fields, Ph. D. Thesis, University of Waterloo (Canada) (1993)

[8] Sophie Huczynska; Gary L. Mullen; Daniel Panario; David Thomson Existence and properties of k-normal elements over finite fields, Finite Fields Appl., Volume 24 (2013), pp. 170-183 | DOI | MR | Zbl

[9] Giorgos Kapetanakis; Lucas Reis Variations of the primitive normal basis theorem, Des. Codes Cryptography, Volume 87 (2019) no. 7, pp. 1459-1480 | DOI | MR | Zbl

[10] Hendrik W. Lenstra; René J. Schoof Primitive normal bases for finite fields, Math. Comput., Volume 48 (1987) no. 177, pp. 217-231 | DOI | MR | Zbl

[11] Rudolf Lidl; Harald Niederreiter Finite fields, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1997 no. 20, xiv+755 pages | MR

[12] Lucas Reis Counting solutions of special linear equations over finite fields, Finite Fields Appl., Volume 68 (2020), 101759, 9 pages | DOI | MR | Zbl

Cited by Sources:

Comments - Policy