We present a point set registration method in bounded domains based on the solution to the Fokker–Planck equation. Our approach leverages (i) density estimation based on Gaussian mixture models; (ii) a stabilized finite element discretization of the Fokker–Planck equation; (iii) a specialized method for the integration of the particles. We review relevant properties of the Fokker–Planck equation that provide the foundations for the numerical method. We discuss two strategies for the integration of the particles and we propose a regularization technique to control the distance of the particles from the boundary of the domain. We perform extensive numerical experiments for two two-dimensional model problems to illustrate the many features of the method.
Nous présentons une méthode d’alignement de nuages de points dans des domaines bornés basée sur la solution de l’équation de Fokker–Planck. Notre approche repose sur : (i) l’estimation de densité à l’aide de modèles de mélange gaussien ; (ii) une discrétisation par éléments finis stabilisée de l’équation de Fokker–Planck ; (iii) une méthode spécialisée pour l’intégration des particules. Nous examinons les propriétés pertinentes de l’équation de Fokker–Planck qui sous-tendent la méthode numérique. Nous discutons deux stratégies pour l’intégration des particules et proposons une technique de régularisation pour contrôler la distance des particules à la frontière du domaine. Nous réalisons de nombreuses expériences numériques pour deux problèmes modèles bidimensionnels afin d’illustrer l’efficacité de la méthode.
Revised:
Accepted:
Published online:
Mots-clés : Alignement de nuages de points, équation de Fokker–Planck, réduction de modèle
Angelo Iollo 1, 2; Tommaso Taddei 1, 2

@article{CRMATH_2025__363_G8_809_0, author = {Angelo Iollo and Tommaso Taddei}, title = {Point-set registration in bounded domains via the {Fokker{\textendash}Planck} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {809--824}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.753}, language = {en}, }
Angelo Iollo; Tommaso Taddei. Point-set registration in bounded domains via the Fokker–Planck equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 809-824. doi : 10.5802/crmath.753. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.753/
[1] Strong convergence of sequences with vanishing relative entropy (2024) | arXiv | Zbl
[2] Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, Volume 61 (2005), pp. 139-157 | Zbl
[3] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl
[4] Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 32 (1982) no. 1-3, pp. 199-259 | DOI | MR | Zbl
[5] Model order reduction by convex displacement interpolation, J. Comput. Phys., Volume 514 (2024), 113230, 22 pages | DOI | MR | Zbl
[6] A tutorial on variational Bayesian inference, Artif. Intell. Rev., Volume 38 (2012), pp. 85-95
[7] On Pinsker’s and Vajda’s type inequalities for Csiszár’s -divergences, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 11, pp. 5377-5386 | DOI | Zbl
[8] Entropy and information theory, Springer, 2011, xxviii+409 pages | DOI | MR | Zbl
[9] The elements of statistical learning, Springer Series in Statistics, Springer, 2009, xxii+745 pages | DOI | MR | Zbl
[10] Advection modes by optimal mass transfer, Phys. Rev. E, Volume 89 (2014) no. 2, 022923, 33 pages
[11] Mapping of coherent structures in parameterized flows by learning optimal transportation with Gaussian models, J. Comput. Phys., Volume 471 (2022), 111671, 24 pages | DOI | MR | Zbl
[12] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17 | DOI | MR | Zbl
[13] Information theory and statistics, Dover Publications, 1997, xvi+399 pages | MR | Zbl
[14] Nonrigid point set registration with robust transformation learning under manifold regularization, IEEE Trans. Neural Netw. Learn. Syst., Volume 30 (2018) no. 12, pp. 3584-3597 | MR
[15] hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., Volume 30 (2007) no. 3, pp. 465-491 | DOI | MR | Zbl
[16] Point set registration: coherent point drift, IEEE Trans. Pattern Anal. Mach. Intell., Volume 32 (2010) no. 12, pp. 2262-2275 | DOI
[17] Analysis of heat equations on domains, London Mathematical Society Monographs, 31, Princeton University Press, 2009, xi+284 pages | DOI | MR | Zbl
[18] Computational optimal transport: with applications to data science, 11, now publishers, 2019 no. 5-6, 272 pages | DOI | Zbl
[19] Numerical models for differential problems, MS&A. Modeling, Simulation and Applications, 2, Springer, 2009, xvi+601 pages | DOI | MR | Zbl
[20] A particle method for collisional kinetic equations. I. Basic theory and one-dimensional results, J. Comput. Phys., Volume 87 (1990) no. 2, pp. 270-300 | DOI | MR | Zbl
[21] Deterministic diffusion of particles, Commun. Pure Appl. Math., Volume 43 (1990) no. 6, pp. 697-733 | DOI | MR | Zbl
[22] A deterministic vortex method for the Navier–Stokes equations, J. Comput. Phys., Volume 108 (1993) no. 1, pp. 84-94 | DOI | MR | Zbl
[23] Partial differential equations in action, Unitext, 99, Springer, 2016, xviii+686 pages | DOI | MR | Zbl
[24] Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser/Springer, 2015, xxvii+353 pages | DOI | MR | Zbl
[25] Generative modeling by estimating gradients of the data distribution, Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (H. Wallach; H. Larochelle; A. Beygelzimer; F. d’Alché-Buc; E. Fox; R. Garnett, eds.) (Advances in Neural Information Processing Systems), NeurIPS, 2019 no. 32, 13 pages
[26] A registration method for model order reduction: data compression and geometry reduction, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. A997-A1027 | DOI | MR | Zbl
[27] Stochastic processes in physics and chemistry, Elsevier, 1992, 480 pages | MR
Cited by Sources:
Comments - Policy