It is a classical result of Dal’Bo that the length spectrum of a non-elementary Fuchsian group is non-arithmetic, namely, it generates a dense additive subgroup of $\mathbb{R}$. In this note we provide an elementary proof of an extension of this theorem: a non-elementary Fuchsian group contains two elements whose lengths are linearly independent over $\mathbb{Q}$, reproving a result of Prasad and Rapinchuk [9].
C’est un résultat classique de Dal’Bo que le spectre des longueurs d’un groupe fuchsien non élémentaire est non arithmétique, c’est-à-dire qu’il génère un sous-groupe additif dense de $\mathbb{R}$. Dans cette note, nous fournissons une preuve élémentaire d’une extension de ce théorème : un groupe fuchsien non élémentaire contient deux éléments dont les longueurs sont linéairement indépendantes sur $\mathbb{Q}$, reproduisant un résultat de Prasad et Rapinchuk [9] dans un cas particulier.
Revised:
Accepted:
Published online:
Keywords: Length spectrum, Fuchsian group, trace field
Mots-clés : Spectre de longueur, groupe fuchsien, corps de traces
George Peterzil 1; Guy Sapire 1
CC-BY 4.0
@article{CRMATH_2025__363_G9_825_0,
author = {George Peterzil and Guy Sapire},
title = {Irrationality of the length spectrum},
journal = {Comptes Rendus. Math\'ematique},
pages = {825--828},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.756},
language = {en},
}
George Peterzil; Guy Sapire. Irrationality of the length spectrum. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 825-828. doi: 10.5802/crmath.756
[1] Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) (Advanced Studies in Pure Mathematics), Volume 26, Mathematical Society of Japan, 2000, pp. 33-48 | DOI | MR | Zbl
[2] The real spectrum compactification of character varieties (2023) | arXiv | Zbl
[3] Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 2, pp. 199-221 | DOI | MR | Zbl
[4] Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 2, pp. 209-249 | Zbl | DOI | MR | Numdam
[5] Length spectrum in rank one symmetric space is not arithmetic, Proc. Am. Math. Soc., Volume 134 (2006) no. 12, pp. 3691-3696 | DOI | MR | Zbl
[6] The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, 219, Springer, 2003, xiv+463 pages | DOI | MR | Zbl
[7] Arithmetic height functions over finitely generated fields, Invent. Math., Volume 140 (2000), pp. 101-142 | Zbl | DOI | MR
[8] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999, xviii+571 pages | DOI | MR | Zbl
[9] Zariski-dense subgroups and transcendental number theory, Math. Res. Lett., Volume 12 (2005), pp. 239-249 | DOI | MR | Zbl
[10] The theory of height functions, Arithmetic geometry (Storrs, Conn., 1984), Springer, 1986, pp. 151-166 | MR | Zbl | DOI
Cited by Sources:
Comments - Policy
