Comptes Rendus
Research article - Algebra, Dynamical systems
Irrationality of the length spectrum
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 825-828

It is a classical result of Dal’Bo that the length spectrum of a non-elementary Fuchsian group is non-arithmetic, namely, it generates a dense additive subgroup of $\mathbb{R}$. In this note we provide an elementary proof of an extension of this theorem: a non-elementary Fuchsian group contains two elements whose lengths are linearly independent over $\mathbb{Q}$, reproving a result of Prasad and Rapinchuk [9].

C’est un résultat classique de Dal’Bo que le spectre des longueurs d’un groupe fuchsien non élémentaire est non arithmétique, c’est-à-dire qu’il génère un sous-groupe additif dense de $\mathbb{R}$. Dans cette note, nous fournissons une preuve élémentaire d’une extension de ce théorème : un groupe fuchsien non élémentaire contient deux éléments dont les longueurs sont linéairement indépendantes sur $\mathbb{Q}$, reproduisant un résultat de Prasad et Rapinchuk [9] dans un cas particulier.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.756
Classification: 20H10, 37D40
Keywords: Length spectrum, Fuchsian group, trace field
Mots-clés : Spectre de longueur, groupe fuchsien, corps de traces

George Peterzil 1; Guy Sapire 1

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G9_825_0,
     author = {George Peterzil and Guy Sapire},
     title = {Irrationality of the length spectrum},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {825--828},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.756},
     language = {en},
}
TY  - JOUR
AU  - George Peterzil
AU  - Guy Sapire
TI  - Irrationality of the length spectrum
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 825
EP  - 828
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.756
LA  - en
ID  - CRMATH_2025__363_G9_825_0
ER  - 
%0 Journal Article
%A George Peterzil
%A Guy Sapire
%T Irrationality of the length spectrum
%J Comptes Rendus. Mathématique
%D 2025
%P 825-828
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.756
%G en
%F CRMATH_2025__363_G9_825_0
George Peterzil; Guy Sapire. Irrationality of the length spectrum. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 825-828. doi: 10.5802/crmath.756

[1] Yves Benoist Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) (Advanced Studies in Pure Mathematics), Volume 26, Mathematical Society of Japan, 2000, pp. 33-48 | DOI | MR | Zbl

[2] Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti The real spectrum compactification of character varieties (2023) | arXiv | Zbl

[3] Françoise Dal’Bo Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 2, pp. 199-221 | DOI | MR | Zbl

[4] Y. Guivarc’h; A. Raugi Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 2, pp. 209-249 | Zbl | DOI | MR | Numdam

[5] Inkang Kim Length spectrum in rank one symmetric space is not arithmetic, Proc. Am. Math. Soc., Volume 134 (2006) no. 12, pp. 3691-3696 | DOI | MR | Zbl

[6] Colin Maclachlan; Alan W. Reid The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, 219, Springer, 2003, xiv+463 pages | DOI | MR | Zbl

[7] Atsushi Moriwaki Arithmetic height functions over finitely generated fields, Invent. Math., Volume 140 (2000), pp. 101-142 | Zbl | DOI | MR

[8] Jürgen Neukirch Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999, xviii+571 pages | DOI | MR | Zbl

[9] Gopal Prasad; Andrei Rapinchuk Zariski-dense subgroups and transcendental number theory, Math. Res. Lett., Volume 12 (2005), pp. 239-249 | DOI | MR | Zbl

[10] Joseph H. Silverman The theory of height functions, Arithmetic geometry (Storrs, Conn., 1984), Springer, 1986, pp. 151-166 | MR | Zbl | DOI

Cited by Sources:

Comments - Policy