Comptes Rendus
Research article - Algebraic geometry
Teissier singularities
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 799-808.

The goal of this note is to introduce Teissier singularities and to explain why they are candidate to play, in positive characteristics, a role for resolution of singularities which is similar to the role played by quasi-ordinary singularities in characteristic zero.

Nous introduisons les singularités Teissier et expliquons pourquoi elles sont candidates pour jouer, en caractéristiques positives, un rôle qui pour la résolution des singularités est similaire à celui joué par les singularités quasi-ordinaires en caractéristique zéro.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.759
Classification: 14B05, 32S05, 14E15
Keywords: Singularities, resolution of singularities, positive characteristic, characteristic polyhedron, overweight deformations
Mots-clés : Singularités quasi-ordinaires, caractéristique positive, polyèdre caractéristique

Hussein Mourtada 1; Bernd Schober 2

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, 75013 Paris, France
2 Hamburg, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G8_799_0,
     author = {Hussein Mourtada and Bernd Schober},
     title = {Teissier singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {799--808},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.759},
     language = {en},
}
TY  - JOUR
AU  - Hussein Mourtada
AU  - Bernd Schober
TI  - Teissier singularities
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 799
EP  - 808
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.759
LA  - en
ID  - CRMATH_2025__363_G8_799_0
ER  - 
%0 Journal Article
%A Hussein Mourtada
%A Bernd Schober
%T Teissier singularities
%J Comptes Rendus. Mathématique
%D 2025
%P 799-808
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.759
%G en
%F CRMATH_2025__363_G8_799_0
Hussein Mourtada; Bernd Schober. Teissier singularities. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 799-808. doi : 10.5802/crmath.759. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.759/

[1] Fuensanta Aroca; Mirna Gómez-Morales; Hussein Mourtada Groebner fans and embedded resolutions of ideals on toric varieties, Beitr. Algebra Geom., Volume 65 (2024) no. 1, pp. 217-228 | DOI | MR | Zbl

[2] Fuensanta Aroca; Mirna Gómez-Morales; Khurram Shabbir Torical modification of Newton non-degenerate ideals, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 107 (2013) no. 1, pp. 221-239 | DOI | MR | Zbl

[3] Vincent Cossart; Olivier Piltant Resolution of singularities of arithmetical threefolds, J. Algebra, Volume 529 (2019), pp. 268-535 | DOI | MR | Zbl

[4] Vincent Cossart; Bernd Schober Characteristic polyhedra of singularities without completion: part II, Collect. Math., Volume 72 (2021) no. 2, pp. 351-392 | DOI | MR | Zbl

[5] Steven Dale Cutkosky; Hussein Mourtada; Bernard Teissier On the construction of valuations and generating sequences on hypersurface singularities, Algebr. Geom., Volume 8 (2021) no. 6, pp. 705-748 | DOI | MR | Zbl

[6] Steven Dale Cutkosky; Hussein Mourtada; Bernard Teissier On uniqueness of finite extensions of monomial valuations and their uniformization (In preparation) | Zbl

[7] E. R. García Barroso; Pedro D. González Pérez Decomposition in bunches of the critical locus of a quasi-ordinary map, Compos. Math., Volume 141 (2005) no. 2, pp. 461-486 | DOI | MR | Zbl

[8] Pedro D. González Pérez Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Can. J. Math., Volume 52 (2000) no. 2, pp. 348-368 | DOI | MR | Zbl

[9] Pedro D. González Pérez Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier, Volume 53 (2003) no. 6, pp. 1819-1881 | DOI | Numdam | MR | Zbl

[10] Heisuke Hironaka Characteristic polyhedra of singularities, J. Math. Kyoto Univ., Volume 7 (1967), pp. 251-293 | DOI | MR | Zbl

[11] Hussein Mourtada; Bernd Schober A polyhedral characterization of quasi-ordinary singularities, Mosc. Math. J., Volume 18 (2018) no. 4, pp. 755-785 | DOI | MR | Zbl

[12] Hussein Mourtada; Bernd Schober On the notion of quasi-ordinary singularities in positive characteristics: Teissier singularities and their resolution (In preparation)

[13] Patrick Popescu-Pampu Introduction to Jung’s method of resolution of singularities, Topology of algebraic varieties and singularities (Contemporary Mathematics), Volume 538, American Mathematical Society, 2011, pp. 401-432 | DOI | MR | Zbl

[14] Guillaume Rond; Bernd Schober An irreducibility criterion for power series, Proc. Am. Math. Soc., Volume 145 (2017) no. 11, pp. 4731-4739 | DOI | MR | Zbl

[15] Jean-Pierre Serre Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages | DOI | MR | Zbl

[16] Bernard Teissier Complex curve singularities: a biased introduction, Singularities in geometry and topology, World Scientific, 2007, pp. 825-887 | DOI | MR | Zbl

[17] Bernard Teissier Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 474-565 | DOI | MR | Zbl

[18] Jenia Tevelev Compactifications of subvarieties of tori, Am. J. Math., Volume 129 (2007) no. 4, pp. 1087-1104 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy