The goal of this note is to introduce Teissier singularities and to explain why they are candidate to play, in positive characteristics, a role for resolution of singularities which is similar to the role played by quasi-ordinary singularities in characteristic zero.
Nous introduisons les singularités Teissier et expliquons pourquoi elles sont candidates pour jouer, en caractéristiques positives, un rôle qui pour la résolution des singularités est similaire à celui joué par les singularités quasi-ordinaires en caractéristique zéro.
Revised:
Accepted:
Published online:
Keywords: Singularities, resolution of singularities, positive characteristic, characteristic polyhedron, overweight deformations
Mots-clés : Singularités quasi-ordinaires, caractéristique positive, polyèdre caractéristique
Hussein Mourtada 1; Bernd Schober 2

@article{CRMATH_2025__363_G8_799_0, author = {Hussein Mourtada and Bernd Schober}, title = {Teissier singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {799--808}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.759}, language = {en}, }
Hussein Mourtada; Bernd Schober. Teissier singularities. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 799-808. doi : 10.5802/crmath.759. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.759/
[1] Groebner fans and embedded resolutions of ideals on toric varieties, Beitr. Algebra Geom., Volume 65 (2024) no. 1, pp. 217-228 | DOI | MR | Zbl
[2] Torical modification of Newton non-degenerate ideals, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 107 (2013) no. 1, pp. 221-239 | DOI | MR | Zbl
[3] Resolution of singularities of arithmetical threefolds, J. Algebra, Volume 529 (2019), pp. 268-535 | DOI | MR | Zbl
[4] Characteristic polyhedra of singularities without completion: part II, Collect. Math., Volume 72 (2021) no. 2, pp. 351-392 | DOI | MR | Zbl
[5] On the construction of valuations and generating sequences on hypersurface singularities, Algebr. Geom., Volume 8 (2021) no. 6, pp. 705-748 | DOI | MR | Zbl
[6] On uniqueness of finite extensions of monomial valuations and their uniformization (In preparation) | Zbl
[7] Decomposition in bunches of the critical locus of a quasi-ordinary map, Compos. Math., Volume 141 (2005) no. 2, pp. 461-486 | DOI | MR | Zbl
[8] Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Can. J. Math., Volume 52 (2000) no. 2, pp. 348-368 | DOI | MR | Zbl
[9] Toric embedded resolutions of quasi-ordinary hypersurface singularities, Ann. Inst. Fourier, Volume 53 (2003) no. 6, pp. 1819-1881 | DOI | Numdam | MR | Zbl
[10] Characteristic polyhedra of singularities, J. Math. Kyoto Univ., Volume 7 (1967), pp. 251-293 | DOI | MR | Zbl
[11] A polyhedral characterization of quasi-ordinary singularities, Mosc. Math. J., Volume 18 (2018) no. 4, pp. 755-785 | DOI | MR | Zbl
[12] On the notion of quasi-ordinary singularities in positive characteristics: Teissier singularities and their resolution (In preparation)
[13] Introduction to Jung’s method of resolution of singularities, Topology of algebraic varieties and singularities (Contemporary Mathematics), Volume 538, American Mathematical Society, 2011, pp. 401-432 | DOI | MR | Zbl
[14] An irreducibility criterion for power series, Proc. Am. Math. Soc., Volume 145 (2017) no. 11, pp. 4731-4739 | DOI | MR | Zbl
[15] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages | DOI | MR | Zbl
[16] Complex curve singularities: a biased introduction, Singularities in geometry and topology, World Scientific, 2007, pp. 825-887 | DOI | MR | Zbl
[17] Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 474-565 | DOI | MR | Zbl
[18] Compactifications of subvarieties of tori, Am. J. Math., Volume 129 (2007) no. 4, pp. 1087-1104 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy