I discuss some of the contributions that Grothendieck brought to differential calculus in the 1960s (infinitesimal neighborhoods, algebraic de Rham cohomology, crystalline cohomology) and sketch a few recent developments.
Je présente quelques-unes des contributions que Grothendieck a apportées au calcul différentiel dans les années 1960 (voisinages infinitésimaux, cohomologie de de Rham algébrique, cohomologie cristalline), et esquisse certains développements récents.
Accepted:
Revised after acceptance:
Published online:
Keywords: Infinitesimal neighborhood, de Rham complex, de Rham cohomology, crystalline cohomology, $p$-adic Hodge theory, cotangent complex, prismatic cohomology
Mots-clés : Voisinage infinitésimal, complexe de de Rham, cohomologie de de Rham, cohomologie cristalline, théorie de Hodge $p$-adique, complexe cotangent, cohomologie prismatique
Luc Illusie 1
CC-BY 4.0
@article{CRMATH_2025__363_G9_829_0,
author = {Luc Illusie},
title = {Grothendieck and differential calculus},
journal = {Comptes Rendus. Math\'ematique},
pages = {829--841},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.764},
language = {en},
}
Luc Illusie. Grothendieck and differential calculus. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 829-841. doi: 10.5802/crmath.764
[1] Théorie des intersections et théorème de Riemann–Roch (Pierre Berthelot; Alexander Grothendieck; Luc Illusie, eds.), Lecture Notes in Mathematics, 225, Springer, 1971, xii+700 pages Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6) | MR | DOI
[2] Homologie des algèbres commutatives, Grundlehren der Mathematischen Wissenschaften, 206, Springer, 1974, xv+341 pages | MR | DOI | Zbl
[3] Groupes de Galois motiviques et périodes, Séminaire Bourbaki. Vol. 2015-2016. Exposés 1104–1119 (Astérisque), Société Mathématique de France, 2017 no. 390, pp. 1-26 (Exposé no. 1104) | MR | Zbl
[4] Prismatic Dieudonné theory, Forum Math. Pi, Volume 11 (2023), e2, 92 pages | DOI | MR | Zbl
[5] -adic periods and derived de Rham cohomology, J. Am. Math. Soc., Volume 25 (2012) no. 3, pp. 715-738 | DOI | MR | Zbl
[6] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Mathematics, 407, Springer, 1974, 604 pages | MR
[7] Notes on crystalline cohomology, Mathematical Notes (Princeton), Princeton University Press; University of Tokyo Press, 1978, vi+243 pages | MR | Zbl
[8] -adic derived de Rham cohomology (2012) | arXiv | Zbl
[9] Prismatic -gauges (2022) https://www.math.ias.edu/... (Notes for a course given at Princeton University)
[10] The prismatization of -adic formal schemes (2022) | arXiv | Zbl
[11] Integral -adic Hodge theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 128 (2018), pp. 219-397 | DOI | MR | Numdam | Zbl
[12] Prisms and prismatic cohomology, Ann. Math. (2), Volume 196 (2022) no. 3, pp. 1135-1275 | DOI | Zbl | MR
[13] Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 426-428 | MR | Zbl
[14] Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math., Inst. Hautes Étud. Sci. (1968) no. 35, pp. 107-126 | MR | Numdam | Zbl
[15] Théorie de Hodge. II, Publ. Math., Inst. Hautes Étud. Sci. (1971) no. 40, pp. 5-57 | MR | Numdam | Zbl | DOI
[16] Théorie de Hodge. III, Publ. Math., Inst. Hautes Étud. Sci. (1974) no. 44, pp. 5-77 | MR | DOI | Numdam | Zbl
[17] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | DOI | MR | Zbl
[18] Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer, 1982, ii+414 pages | MR | DOI | Zbl
[19] Lectures on -divisible groups, Lecture Notes in Mathematics, 302, Springer, 1972, v+98 pages | MR | DOI | Zbl
[20] Prismatization, Sel. Math., New Ser., Volume 30 (2024) no. 3, 49, 150 pages | DOI | MR | Zbl
[21] Sur certains types de représentations -adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti–Tate, Ann. Math. (2), Volume 115 (1982) no. 3, pp. 529-577 | DOI | MR | Zbl
[22] Représentations -adiques semi-stables, Périodes -adiques (Bures-sur-Yvette, 1988) (Astérisque), Société Mathématique de France, 1994 no. 223, pp. 113-184 | MR | Numdam
[23] An algebraicity conjecture of Drinfeld and the moduli of -divisible groups (2025) | arXiv
[24] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. 0, I, Publ. Math., Inst. Hautes Étud. Sci. (1964) no. 20, pp. 5-259 | MR | DOI | Zbl
[25] On the de Rham cohomology of algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 29, pp. 95-103 | MR | DOI | Numdam | Zbl
[26] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 32, pp. 5-361 | MR | Numdam | Zbl
[27] Catégories cofibrées additives et complexe cotangent relatif, Lecture Notes in Mathematics, 79, Springer, 1968, ii+167 pages | MR | Zbl
[28] Crystals and the de Rham cohomology of schemes, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 306-358 | MR | Zbl
[29] Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Vol. 4, Société Mathématique de France, 1995, pp. 169-193 (Exposé no. 149) | MR
[30] Résidus et dualité—Prénotes pour un “Séminaire Hartshorne” (Robin Hartshorne, ed.), Documents Mathématiques, 21, Société Mathématique de France, 2024, xxiv+165 pages | Zbl | MR
[31] Techniques de construction en géométrie analytique. VII. Étude locale des morphismes ; éléments de calcul infinitésimal, Familles d’espaces complexes et fondements de la géométrie analytique (Séminaire Henri Cartan), 1960-1961 no. 13, 14, pp. 1-27
[32] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. Math. (2), Volume 79 (1964), p. 109-203 and 205–326 | DOI | MR | Zbl
[33] Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239, Springer, 1971, xv+355 pages | MR | DOI | Zbl
[34] Complexe cotangent et déformations. II, Lecture Notes in Mathematics, 283, Springer, 1972, vii+304 pages | MR | DOI | Zbl
[35] Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4), Volume 12 (1979) no. 4, pp. 501-661 | MR | DOI | Numdam | Zbl
[36] Grothendieck’s existence theorem in formal geometry, Fundamental algebraic geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society, 2005, pp. 179-233 | MR
[37] Algebra und Differentialrechnung, Bericht über die Mathematiker-Tagung in Berlin, Januar, 1953, Deutscher Verlag der Wissenschaften, 1953, pp. 58-163 | MR | Zbl
[38] Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci. (1970) no. 39, pp. 175-232 | Numdam | Zbl | MR | DOI
[39] Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., Volume 23 (1974), pp. 73-77 | DOI | MR | Zbl
[40] On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., Volume 8 (1968), pp. 199-213 | MR | Zbl | DOI
[41] Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, 370, Springer, 1974, vii+134 pages | MR | DOI | Zbl
[42] -modules and de Rham cohomology, Adv. Math., Volume 409 (2022), 108691, 72 pages | DOI | MR | Zbl
[43] Dieudonné theory via cohomology classifying stacks II (2024) | arXiv | Zbl
[44] Formal cohomology. I, Ann. Math. (2), Volume 88 (1968), pp. 181-217 | DOI | MR | Zbl
[45] Pathologies of modular algebraic surfaces, Am. J. Math., Volume 83 (1961), pp. 339-342 | DOI | MR | Zbl
[46] Non-decomposability of the de Rham complex and non-semisimplicity of the Sen operator (2023) | arXiv | Zbl
[47] On the (co-)homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) (Proceedings of Symposia in Pure Mathematics), Volume XVII, American Mathematical Society, 1970, pp. 65-87 | MR | DOI | Zbl
[48] Œuvres mathématiques, L’Enseignement Mathématique, 1981, 748 pages | MR | Zbl
[49] Berkeley lectures on -adic geometry, Annals of Mathematics Studies, 207, Princeton University Press, 2020, x+250 pages | MR | Zbl
[50] Sur la topologie des variétés algébriques en caractéristique , Symposium internacional de topología algebraica, Universidad Nacional Autónoma de México and UNESCO, México, 1958, pp. 24-53 | MR | Zbl
[51] Stacks Project http://stacks.math.columbia.edu
[52] -adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Volume 137 (1999) no. 2, pp. 233-411 | DOI | MR | Zbl
[53] Opere matematiche. Memorie e note. Vol. I. 1881–1892, Accademia Nazionale dei Lincei, 1954, xxxiii+604 pages | MR | Zbl
Cited by Sources:
Comments - Policy
