Comptes Rendus
Historical Commentary - Algebra
Grothendieck and differential calculus
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 829-841

I discuss some of the contributions that Grothendieck brought to differential calculus in the 1960s (infinitesimal neighborhoods, algebraic de Rham cohomology, crystalline cohomology) and sketch a few recent developments.

Je présente quelques-unes des contributions que Grothendieck a apportées au calcul différentiel dans les années 1960 (voisinages infinitésimaux, cohomologie de de Rham algébrique, cohomologie cristalline), et esquisse certains développements récents.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/crmath.764
Classification: 14F20, 14F30, 14F40
Keywords: Infinitesimal neighborhood, de Rham complex, de Rham cohomology, crystalline cohomology, $p$-adic Hodge theory, cotangent complex, prismatic cohomology
Mots-clés : Voisinage infinitésimal, complexe de de Rham, cohomologie de de Rham, cohomologie cristalline, théorie de Hodge $p$-adique, complexe cotangent, cohomologie prismatique

Luc Illusie 1

1 Institut de Mathématique d’Orsay, Bât. 307, Université Paris-Saclay, 91405 Orsay Cédex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G9_829_0,
     author = {Luc Illusie},
     title = {Grothendieck and differential calculus},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {829--841},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.764},
     language = {en},
}
TY  - JOUR
AU  - Luc Illusie
TI  - Grothendieck and differential calculus
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 829
EP  - 841
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.764
LA  - en
ID  - CRMATH_2025__363_G9_829_0
ER  - 
%0 Journal Article
%A Luc Illusie
%T Grothendieck and differential calculus
%J Comptes Rendus. Mathématique
%D 2025
%P 829-841
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.764
%G en
%F CRMATH_2025__363_G9_829_0
Luc Illusie. Grothendieck and differential calculus. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 829-841. doi: 10.5802/crmath.764

[1] Théorie des intersections et théorème de Riemann–Roch (Pierre Berthelot; Alexander Grothendieck; Luc Illusie, eds.), Lecture Notes in Mathematics, 225, Springer, 1971, xii+700 pages Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6) | MR | DOI

[2] Michel André Homologie des algèbres commutatives, Grundlehren der Mathematischen Wissenschaften, 206, Springer, 1974, xv+341 pages | MR | DOI | Zbl

[3] Yves André Groupes de Galois motiviques et périodes, Séminaire Bourbaki. Vol. 2015-2016. Exposés 1104–1119 (Astérisque), Société Mathématique de France, 2017 no. 390, pp. 1-26 (Exposé no. 1104) | MR | Zbl

[4] Johannes Anschütz; Arthur-César Le Bras Prismatic Dieudonné theory, Forum Math. Pi, Volume 11 (2023), e2, 92 pages | DOI | MR | Zbl

[5] A. Beilinson p-adic periods and derived de Rham cohomology, J. Am. Math. Soc., Volume 25 (2012) no. 3, pp. 715-738 | DOI | MR | Zbl

[6] Pierre Berthelot Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in Mathematics, 407, Springer, 1974, 604 pages | MR

[7] Pierre Berthelot; Arthur Ogus Notes on crystalline cohomology, Mathematical Notes (Princeton), Princeton University Press; University of Tokyo Press, 1978, vi+243 pages | MR | Zbl

[8] Bhargav Bhatt p-adic derived de Rham cohomology (2012) | arXiv | Zbl

[9] Bhargav Bhatt Prismatic F-gauges (2022) https://www.math.ias.edu/... (Notes for a course given at Princeton University)

[10] Bhargav Bhatt; Jacob Lurie The prismatization of p-adic formal schemes (2022) | arXiv | Zbl

[11] Bhargav Bhatt; Matthew Morrow; Peter Scholze Integral p-adic Hodge theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 128 (2018), pp. 219-397 | DOI | MR | Numdam | Zbl

[12] Bhargav Bhatt; Peter Scholze Prisms and prismatic cohomology, Ann. Math. (2), Volume 196 (2022) no. 3, pp. 1135-1275 | DOI | Zbl | MR

[13] Pierre Cartier Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 426-428 | MR | Zbl

[14] Pierre Deligne Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math., Inst. Hautes Étud. Sci. (1968) no. 35, pp. 107-126 | MR | Numdam | Zbl

[15] Pierre Deligne Théorie de Hodge. II, Publ. Math., Inst. Hautes Étud. Sci. (1971) no. 40, pp. 5-57 | MR | Numdam | Zbl | DOI

[16] Pierre Deligne Théorie de Hodge. III, Publ. Math., Inst. Hautes Étud. Sci. (1974) no. 44, pp. 5-77 | MR | DOI | Numdam | Zbl

[17] Pierre Deligne; Luc Illusie Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | DOI | MR | Zbl

[18] Pierre Deligne; James S. Milne; Arthur Ogus; Kuang-yen Shih Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer, 1982, ii+414 pages | MR | DOI | Zbl

[19] Michel Demazure Lectures on p-divisible groups, Lecture Notes in Mathematics, 302, Springer, 1972, v+98 pages | MR | DOI | Zbl

[20] Vladimir Drinfeld Prismatization, Sel. Math., New Ser., Volume 30 (2024) no. 3, 49, 150 pages | DOI | MR | Zbl

[21] Jean-Marc Fontaine Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti–Tate, Ann. Math. (2), Volume 115 (1982) no. 3, pp. 529-577 | DOI | MR | Zbl

[22] Jean-Marc Fontaine Représentations p-adiques semi-stables, Périodes p-adiques (Bures-sur-Yvette, 1988) (Astérisque), Société Mathématique de France, 1994 no. 223, pp. 113-184 | MR | Numdam

[23] Zachary Gardner; Keerthi Madapusi An algebraicity conjecture of Drinfeld and the moduli of p-divisible groups (2025) | arXiv

[24] Alexander Grothendieck Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. 0, I, Publ. Math., Inst. Hautes Étud. Sci. (1964) no. 20, pp. 5-259 | MR | DOI | Zbl

[25] Alexander Grothendieck On the de Rham cohomology of algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 29, pp. 95-103 | MR | DOI | Numdam | Zbl

[26] Alexander Grothendieck Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 32, pp. 5-361 | MR | Numdam | Zbl

[27] Alexander Grothendieck Catégories cofibrées additives et complexe cotangent relatif, Lecture Notes in Mathematics, 79, Springer, 1968, ii+167 pages | MR | Zbl

[28] Alexander Grothendieck Crystals and the de Rham cohomology of schemes, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 306-358 | MR | Zbl

[29] Alexander Grothendieck Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Vol. 4, Société Mathématique de France, 1995, pp. 169-193 (Exposé no. 149) | MR

[30] Alexander Grothendieck Résidus et dualité—Prénotes pour un “Séminaire Hartshorne” (Robin Hartshorne, ed.), Documents Mathématiques, 21, Société Mathématique de France, 2024, xxiv+165 pages | Zbl | MR

[31] Alexander Grothendieck Techniques de construction en géométrie analytique. VII. Étude locale des morphismes ; éléments de calcul infinitésimal, Familles d’espaces complexes et fondements de la géométrie analytique (Séminaire Henri Cartan), 1960-1961 no. 13, 14, pp. 1-27

[32] Heisuke Hironaka Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. Math. (2), Volume 79 (1964), p. 109-203 and 205–326 | DOI | MR | Zbl

[33] Luc Illusie Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239, Springer, 1971, xv+355 pages | MR | DOI | Zbl

[34] Luc Illusie Complexe cotangent et déformations. II, Lecture Notes in Mathematics, 283, Springer, 1972, vii+304 pages | MR | DOI | Zbl

[35] Luc Illusie Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4), Volume 12 (1979) no. 4, pp. 501-661 | MR | DOI | Numdam | Zbl

[36] Luc Illusie Grothendieck’s existence theorem in formal geometry, Fundamental algebraic geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society, 2005, pp. 179-233 | MR

[37] Erich Kähler Algebra und Differentialrechnung, Bericht über die Mathematiker-Tagung in Berlin, Januar, 1953, Deutscher Verlag der Wissenschaften, 1953, pp. 58-163 | MR | Zbl

[38] Nicholas M. Katz Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci. (1970) no. 39, pp. 175-232 | Numdam | Zbl | MR | DOI

[39] Nicholas M. Katz; William Messing Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., Volume 23 (1974), pp. 73-77 | DOI | MR | Zbl

[40] Nicholas M. Katz; Tadao Oda On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., Volume 8 (1968), pp. 199-213 | MR | Zbl | DOI

[41] B. Mazur; William Messing Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, 370, Springer, 1974, vii+134 pages | MR | DOI | Zbl

[42] Shubhodip Mondal 𝔾 a perf -modules and de Rham cohomology, Adv. Math., Volume 409 (2022), 108691, 72 pages | DOI | MR | Zbl

[43] Shubhodip Mondal Dieudonné theory via cohomology classifying stacks II (2024) | arXiv | Zbl

[44] P. Monsky; G. Washnitzer Formal cohomology. I, Ann. Math. (2), Volume 88 (1968), pp. 181-217 | DOI | MR | Zbl

[45] David Mumford Pathologies of modular algebraic surfaces, Am. J. Math., Volume 83 (1961), pp. 339-342 | DOI | MR | Zbl

[46] Alexander Petrov Non-decomposability of the de Rham complex and non-semisimplicity of the Sen operator (2023) | arXiv | Zbl

[47] Daniel Quillen On the (co-)homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) (Proceedings of Symposia in Pure Mathematics), Volume XVII, American Mathematical Society, 1970, pp. 65-87 | MR | DOI | Zbl

[48] Georges de Rham Œuvres mathématiques, L’Enseignement Mathématique, 1981, 748 pages | MR | Zbl

[49] Peter Scholze; Jared Weinstein Berkeley lectures on p-adic geometry, Annals of Mathematics Studies, 207, Princeton University Press, 2020, x+250 pages | MR | Zbl

[50] Jean-Pierre Serre Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topología algebraica, Universidad Nacional Autónoma de México and UNESCO, México, 1958, pp. 24-53 | MR | Zbl

[51] The Stacks Project Authors Stacks Project http://stacks.math.columbia.edu

[52] Takeshi Tsuji p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Volume 137 (1999) no. 2, pp. 233-411 | DOI | MR | Zbl

[53] Vito Volterra Opere matematiche. Memorie e note. Vol. I. 1881–1892, Accademia Nazionale dei Lincei, 1954, xxxiii+604 pages | MR | Zbl

Cited by Sources:

Comments - Policy