We address the problem of consistency of the $k$-nearest neighbors kernel estimators of the density and the regression function in the multivariate case. We get the rates of strong uniform consistency on the whole space $\mathbb{R}^p$ for these estimators under specified assumptions.
Cet article aborde le problème de la convergence des estimateurs de la densité et de la fonction de régression par la méthode des $k$ plus proches voisins, dans le cas multivarié. Nous déterminons les vitesses de convergence uniforme presque sûre sur tout l’espace $\mathbb{R}^p$, sous des conditions spécifiées.
Revised:
Accepted:
Published online:
Keywords: $k$-nearest neighbors, kernel estimators, density, regression function, strong uniform consistency, rates of convergence
Mots-clés : $k$ plus proches voisins, estimateurs à noyau, densité, fonction de régression, convergence uniforme presque sûre, vitesse de convergence
Luran Bengono Mintogo 1; Emmanuel de Dieu Nkou 1; Guy Martial Nkiet 1
CC-BY 4.0
@article{CRMATH_2025__363_G10_1035_0,
author = {Luran Bengono Mintogo and Emmanuel de Dieu Nkou and Guy Martial Nkiet},
title = {Rates of strong uniform consistency for the $k$-nearest neighbors kernel estimators of density and regression function},
journal = {Comptes Rendus. Math\'ematique},
pages = {1035--1046},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.784},
language = {en},
}
TY - JOUR AU - Luran Bengono Mintogo AU - Emmanuel de Dieu Nkou AU - Guy Martial Nkiet TI - Rates of strong uniform consistency for the $k$-nearest neighbors kernel estimators of density and regression function JO - Comptes Rendus. Mathématique PY - 2025 SP - 1035 EP - 1046 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.784 LA - en ID - CRMATH_2025__363_G10_1035_0 ER -
%0 Journal Article %A Luran Bengono Mintogo %A Emmanuel de Dieu Nkou %A Guy Martial Nkiet %T Rates of strong uniform consistency for the $k$-nearest neighbors kernel estimators of density and regression function %J Comptes Rendus. Mathématique %D 2025 %P 1035-1046 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.784 %G en %F CRMATH_2025__363_G10_1035_0
Luran Bengono Mintogo; Emmanuel de Dieu Nkou; Guy Martial Nkiet. Rates of strong uniform consistency for the $k$-nearest neighbors kernel estimators of density and regression function. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1035-1046. doi: 10.5802/crmath.784
[1] On bandwidth variation in kernel estimates. A square root law, Ann. Stat., Volume 10 (1982), pp. 1217-1223 | DOI | MR | Zbl
[2] ‑nearest neighbors prediction and classifcation for spatial data, J. Spatial Econom., Volume 4 (2023), 12
[3] Estimation locale linéaire de la régression non paramétrique fonctionnelle par la méthode des plus proches voisins, C. R. Math., Volume 355 (2017), pp. 824-829 | DOI | MR | Zbl
[4] Multivariate data-driven -NN function estimation, J. Multivariate Anal., Volume 35 (1990) no. 1, pp. 1-11 | Zbl | DOI
[5] Lectures on the nearest neighbor method, Springer Series in the Data Sciences, Springer, 2015, ix+290 pages | DOI | MR | Zbl
[6] Convergence de l’estimateur à noyau des plus proches voisins en régression fonctionnelle non-paramétrique, C. R. Math., Volume 346 (2008), pp. 339-342 | DOI | Zbl
[7] An estimate concerning the Kolmogoroff limit distribution, Trans. Am. Math. Soc., Volume 67 (1949), pp. 36-50 | Zbl
[8] Estimation de la régression par la méthode des points les plus proches avec noyau: quelques propriétés de convergence ponctuelle, Nonparametric asymptotic statistics (Proc. Conf., Rouen, 1979) (French) (Lecture Notes in Mathematics), Volume 821, Springer, 1980, pp. 159-175 | MR | Zbl
[9] On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals, Ann. Inst. Henri Poincaré, Volume 37 (2001), pp. 503-522 | DOI | Zbl
[10] Variable kernel density estimates and variable kernel density estimates, Aust. J. Stat., Volume 32 (1990) no. 3, pp. 361-371 | DOI | MR
[11] Uniform consistency of -NN regressors for functional variables, Stat. Probab. Lett., Volume 83 (2013), pp. 1863-1870 | DOI | MR | Zbl
[12] Convergence of functional -nearest neighbor regression estimate with functional responses, Electron. J. Stat., Volume 5 (2011), pp. 31-40 | DOI | MR | Zbl
[13] Strong consistency of nearest neighbor kernel regression estimation for stationary dependent samples, Sci. China, Ser. A, Volume 41 (1998), pp. 918-926 | DOI | MR | Zbl
[14] Multivariate -nearest neighbor density estimates, J. Multivariate Anal., Volume 9 (1979), pp. 1-15 | DOI | MR | Zbl
[15] Consistency properties of nearest neighbor density function estimators, Ann. Stat., Volume 5 (1977), pp. 143-154 | DOI | MR | Zbl
[16] Strong consistency of kernel method for sliced average variance estimation, Commun. Stat., Theory Methods, Volume 52 (2023), pp. 7586-7600 | Zbl | DOI | MR
[17] Strong consistency of kernel estimator in a semiparametric regression model, Statistics, Volume 53 (2019), pp. 1289-1305 | DOI | MR | Zbl
[18] Sharper bounds for Gaussian and empirical processes, Ann. Probab., Volume 22 (1994), pp. 28-76 | DOI | MR | Zbl
[19] Variable kernel density estimation, Ann. Stat., Volume 20 (1992), pp. 1236-1265 | MR | Zbl
[20] Rates of strong uniform convergence of nearest neighbor density estimates on any compact set, Appl. Math. Mech., Engl. Ed., Volume 11 (1990) no. 4, pp. 385-393 | MR | Zbl
[21] On kernel method for sliced average variance estimation, J. Multivariate Anal., Volume 98 (2007), pp. 970-991 | DOI | MR | Zbl
[22] Asymptotics for kernel estimate of sliced inverse regression, Ann. Stat., Volume 24 (1996), pp. 1053-1068 | MR | Zbl
Cited by Sources:
Comments - Policy
