Comptes Rendus
Research article - Harmonic analysis
Quantitative suboptimal Sobolev embeddings
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1363-1376

We present two new families of integral inequalities involving Sobolev seminorms associated with compact Sobolev embeddings. These inequalities quantify the fact that, on “many” small balls of a given domain, quantitative Sobolev embeddings are “much better” than predicted by scaling arguments.

On présente deux nouvelles familles d’inégalités intégrales impliquant des semi-normes de Sobolev, associées aux injections de Sobolev compactes. Ces inégalités quantifient le fait que, sur « un grand nombre » de boules contenues dans un domaine fixé, les inégalités de Sobolev quantitatives se comportent « bien mieux » que suggéré par un argument de mise à l’échelle.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.798
Classification: 46E35
Keywords: Sobolev embeddings, weak $L^p$-estimates
Mots-clés : Injections de Sobolev, estimées $L^p$ faibles

Antoine Detaille 1, 2; Petru Mironescu 1

1 Universite Claude Bernard Lyon 1, CNRS, Centrale Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, 69622 Villeurbanne, France
2 ETH Zürich, Department of Mathematics, Rämistrasse 101, Zürich 8092, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G12_1363_0,
     author = {Antoine Detaille and Petru Mironescu},
     title = {Quantitative suboptimal {Sobolev} embeddings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1363--1376},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.798},
     language = {en},
}
TY  - JOUR
AU  - Antoine Detaille
AU  - Petru Mironescu
TI  - Quantitative suboptimal Sobolev embeddings
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1363
EP  - 1376
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.798
LA  - en
ID  - CRMATH_2025__363_G12_1363_0
ER  - 
%0 Journal Article
%A Antoine Detaille
%A Petru Mironescu
%T Quantitative suboptimal Sobolev embeddings
%J Comptes Rendus. Mathématique
%D 2025
%P 1363-1376
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.798
%G en
%F CRMATH_2025__363_G12_1363_0
Antoine Detaille; Petru Mironescu. Quantitative suboptimal Sobolev embeddings. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1363-1376. doi: 10.5802/crmath.798

[1] H. Brezis; P. Mironescu Where Sobolev interacts with Gagliardo–Nirenberg, J. Funct. Anal., Volume 277 (2019) no. 8, pp. 2839-2864 | DOI | Zbl

[2] T. Bullion-Gauthier Higher-order affine Sobolev inequalities (2025) | HAL

[3] R. A. DeVore; R. C. Sharpley Besov spaces on domains in d , Trans. Am. Math. Soc., Volume 335 (1993) no. 2, pp. 843-864 | DOI | Zbl

[4] L. Grafakos Classical Fourier analysis, Graduate Texts in Mathematics, Springer, 2008 no. 249 | MR | DOI | Zbl

[5] P. Mironescu; J. Van Schaftingen Lifting in compact covering spaces for fractional Sobolev mappings, Anal. PDE, Volume 14 (2021) no. 6, pp. 1851-1871 | Zbl | DOI | MR

[6] V. A. Solonnikov Certain inequalities for functions from the classes W p (R n ), Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 27 (1972), pp. 194-210 | MR

[7] H. Triebel Theory of function spaces, Monographs in Mathematics, Birkhäuser, 1983 no. 78 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy