We present two new families of integral inequalities involving Sobolev seminorms associated with compact Sobolev embeddings. These inequalities quantify the fact that, on “many” small balls of a given domain, quantitative Sobolev embeddings are “much better” than predicted by scaling arguments.
On présente deux nouvelles familles d’inégalités intégrales impliquant des semi-normes de Sobolev, associées aux injections de Sobolev compactes. Ces inégalités quantifient le fait que, sur « un grand nombre » de boules contenues dans un domaine fixé, les inégalités de Sobolev quantitatives se comportent « bien mieux » que suggéré par un argument de mise à l’échelle.
Revised:
Accepted:
Published online:
Keywords: Sobolev embeddings, weak $L^p$-estimates
Mots-clés : Injections de Sobolev, estimées $L^p$ faibles
Antoine Detaille 1, 2; Petru Mironescu 1
CC-BY 4.0
@article{CRMATH_2025__363_G12_1363_0,
author = {Antoine Detaille and Petru Mironescu},
title = {Quantitative suboptimal {Sobolev} embeddings},
journal = {Comptes Rendus. Math\'ematique},
pages = {1363--1376},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.798},
language = {en},
}
Antoine Detaille; Petru Mironescu. Quantitative suboptimal Sobolev embeddings. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1363-1376. doi: 10.5802/crmath.798
[1] Where Sobolev interacts with Gagliardo–Nirenberg, J. Funct. Anal., Volume 277 (2019) no. 8, pp. 2839-2864 | DOI | Zbl
[2] Higher-order affine Sobolev inequalities (2025) | HAL
[3] Besov spaces on domains in , Trans. Am. Math. Soc., Volume 335 (1993) no. 2, pp. 843-864 | DOI | Zbl
[4] Classical Fourier analysis, Graduate Texts in Mathematics, Springer, 2008 no. 249 | MR | DOI | Zbl
[5] Lifting in compact covering spaces for fractional Sobolev mappings, Anal. PDE, Volume 14 (2021) no. 6, pp. 1851-1871 | Zbl | DOI | MR
[6] Certain inequalities for functions from the classes , Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 27 (1972), pp. 194-210 | MR
[7] Theory of function spaces, Monographs in Mathematics, Birkhäuser, 1983 no. 78 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy
