Comptes Rendus
Research article - Partial differential equations
Recovering functions via doubly homogeneous nonlocal gradients
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1377-1406

We investigate a class of nonlocal gradients featuring distinct homogeneities at zero and infinity. We establish a representation formula for such doubly homogeneous operators and derive associated Sobolev-type inequalities. We also propose open questions linked to our results, suggesting directions for future research inspired by the work of Haïm Brezis.

Nous étudions une classe de gradients non locaux présentant des homogénéités distinctes en zéro et à l’infini. Nous établissons une formule de représentation pour ces opérateurs doublement homogènes et en déduisons des inégalités de Sobolev associées. Nous proposons également des questions ouvertes liées à nos résultats, suggérant des directions de recherche inspirées par les travaux de Haïm Brezis.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.800
Classification: 26A33, 47G20, 42A38, 47A67
Keywords: Riesz fractional gradient, nonlocal gradient, representation formula, Sobolev inequality, Fourier transform, Brezis-type problems
Mots-clés : Gradient fractionnaire de Riesz, gradient non local, formule de représentation, inégalité de Sobolev, transformée de Fourier, problèmes de type Brezis

Stefano Buccheri 1; Augusto C. Ponce 2

1 Università degli Studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Via Vicinale dell’Infermeria 58, 80125 Napoli, Italy
2 Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, L7.01.02, 1348 Louvain-la-Neuve, Belgium
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2025__363_G12_1377_0,
     author = {Stefano Buccheri and Augusto C. Ponce},
     title = {Recovering functions via doubly homogeneous nonlocal gradients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1377--1406},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.800},
     language = {en},
}
TY  - JOUR
AU  - Stefano Buccheri
AU  - Augusto C. Ponce
TI  - Recovering functions via doubly homogeneous nonlocal gradients
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1377
EP  - 1406
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.800
LA  - en
ID  - CRMATH_2025__363_G12_1377_0
ER  - 
%0 Journal Article
%A Stefano Buccheri
%A Augusto C. Ponce
%T Recovering functions via doubly homogeneous nonlocal gradients
%J Comptes Rendus. Mathématique
%D 2025
%P 1377-1406
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.800
%G en
%F CRMATH_2025__363_G12_1377_0
Stefano Buccheri; Augusto C. Ponce. Recovering functions via doubly homogeneous nonlocal gradients. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1377-1406. doi: 10.5802/crmath.800

[1] Frederick J. Almgren; Elliott H. Lieb Symmetric decreasing rearrangement is sometimes continuous, J. Am. Math. Soc., Volume 2 (1989) no. 4, pp. 683-773 | DOI

[2] Stefano Almi; Maicol Caponi; Manuel Friedrich; Francesco Solombrino A fractional approach to strain-gradient plasticity: beyond core-radius of discrete dislocations, Math. Ann., Volume 391 (2025) no. 3, pp. 4063-4115 | DOI | Zbl

[3] José Carlos Bellido; Javier Cueto; Carlos Mora-Corral Non-local gradients in bounded domains motivated by continuum mechanics: fundamental theorem of calculus and embeddings, Adv. Nonlinear Anal., Volume 12 (2023) no. 1, 20220316, 48 pages | Zbl

[4] José Carlos Bellido; Carlos Mora-Corral; Hidde Schönberger Nonlocal gradients: fundamental theorem of calculus, Poincaré inequalities and embeddings, J. Lond. Math. Soc. (2), Volume 112 (2025) no. 2, e70277, 53 pages | DOI | MR | Zbl

[5] Jean Bourgain; Haïm Brezis On the equation divY=f and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI

[6] Jean Bourgain; Haïm Brezis New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315 | DOI

[7] Jean Bourgain; Haïm Brezis; Petru Mironescu Another look at Sobolev spaces, Optimal control and partial differential equations (José Luis Menaldi; Edmundo Rofman; Agnès Sulem, eds.), IOS Press, 2001, pp. 439-455 | Zbl

[8] Jean Bourgain; Haïm Brezis; Petru Mironescu Limiting embedding theorems for W s,p when s1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 | DOI

[9] Jean Bourgain; Haïm Brezis; Petru Mironescu H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math., Inst. Hautes Étud. Sci. (2004) no. 99, pp. 1-115 | Numdam | DOI

[10] Haïm Brezis How to recognize constant functions. A connection with Sobolev spaces, Russ. Math. Surv., Volume 57 (2002) no. 4, pp. 693-708 | DOI

[11] Haïm Brezis; Petru Mironescu Sobolev maps to the circle — From the perspective of analysis, geometry, and topology, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser/Springer, 2021 no. 96 | Zbl

[12] Haïm Brezis; Petru Mironescu Non-local approximations of the gradient, Confluentes Math., Volume 15 (2023), pp. 27-44 | MR | Numdam

[13] Elia Bruè; Mattia Calzi; Giovanni E. Comi; Giorgio Stefani A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II, Comptes Rendus. Mathématique, Volume 360 (2022), pp. 589-626 | DOI

[14] Giovanni E. Comi; Giorgio Stefani A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up, J. Funct. Anal., Volume 277 (2019) no. 10, pp. 3373-3435 | Zbl

[15] Qiang Du; Max Gunzburger; R. B. Lehoucq; Kun Zhou A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 3, pp. 493-540 | DOI | MR | Zbl

[16] Rupert L. Frank; Robert Seiringer Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., Volume 255 (2008) no. 12, pp. 3407-3430 | DOI

[17] Guy Gilboa; Stanley Osher Nonlocal operators with applications to image processing, Multiscale Model. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | DOI

[18] Loukas Grafakos Classical Fourier analysis, Graduate Texts in Mathematics, Springer, 2014 no. 249 | DOI

[19] G. H. Hardy; J. E. Littlewood; G. Pólya Inequalities, Cambridge Mathematical Library, Cambridge University Press, 1988 | Zbl | MR

[20] Lars Hörmander The analysis of linear partial differential operators I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 | Zbl | DOI | MR

[21] J. Horváth On some composition formulas, Proc. Am. Math. Soc., Volume 10 (1959), pp. 433-437 | DOI

[22] Ethan Y. Jaffe Fourier transform of homogeneous radial distributions https://r-grande.github.io/... (Unpublished notes)

[23] V. I. Kolyada; A. K. Lerner On limiting embeddings of Besov spaces, Stud. Math., Volume 171 (2005) no. 1, pp. 1-13 | DOI

[24] Vladimir Maz’ya; Tatyana Shaposhnikova On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 Erratum: J. Funct. Anal. 201(2003), 298–300 | Zbl

[25] Mark M. Meerschaert; Jeff Mortensen; Stephen W. Wheatcraft Fractional vector calculus for fractional advection-dispersion, Phys. A: Stat. Mech. Appl., Volume 367 (2006), pp. 181-190 | DOI

[26] Tadele Mengesha; Daniel E. Spector Localization of nonlocal gradients in various topologies, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1–2, pp. 253-279 | DOI

[27] Richard O’Neil Convolution operators and L(p,q) spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | Zbl

[28] E. T. Oklander Interpolación, espacios de Lorentz y teorema de Marcinkiewicz, Cursos y Seminarios de Matemática, Universidad de Buenos Aires, 1965 no. 20 | MR | Zbl

[29] Augusto C. Ponce Elliptic PDEs, measures and capacities, EMS Tracts in Mathematics, European Mathematical Society, 2016 no. 23 | DOI

[30] Augusto C. Ponce; Daniel E. Spector A boxing inequality for the fractional perimeter, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 20 (2020) no. 1, pp. 107-141 | Zbl

[31] Stefan G. Samko; Anatoly A. Kilbas; Oleg I. Marichev Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, 1993 | MR | Zbl

[32] Armin Schikorra; Daniel E. Spector; Jean Van Schaftingen An L 1 -type estimate for Riesz potentials, Rev. Mat. Iberoam., Volume 33 (2017) no. 1, pp. 291-303 | DOI

[33] Tien-Tsan Shieh; Daniel E. Spector On a new class of fractional partial differential equations, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 321-336 | DOI

[34] Tien-Tsan Shieh; Daniel E. Spector On a new class of fractional partial differential equations II, Adv. Calc. Var., Volume 11 (2018) no. 3, pp. 289-307 | DOI

[35] M. Šilhavý Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Contin. Mech. Thermodyn., Volume 32 (2020) no. 1, pp. 207-228 | DOI

[36] Daniel E. Spector An optimal Sobolev embedding for L 1 , J. Funct. Anal., Volume 279 (2020) no. 3, 108559, 26 pages | DOI | MR

[37] Jean Van Schaftingen Estimates for L 1 -vector fields, Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 181-186 | DOI | MR

[38] William P. Ziemer Weakly differentiable functions, Graduate Texts in Mathematics, Springer, 1989 no. 120 | DOI

Cited by Sources:

Comments - Policy