We investigate a class of nonlocal gradients featuring distinct homogeneities at zero and infinity. We establish a representation formula for such doubly homogeneous operators and derive associated Sobolev-type inequalities. We also propose open questions linked to our results, suggesting directions for future research inspired by the work of Haïm Brezis.
Nous étudions une classe de gradients non locaux présentant des homogénéités distinctes en zéro et à l’infini. Nous établissons une formule de représentation pour ces opérateurs doublement homogènes et en déduisons des inégalités de Sobolev associées. Nous proposons également des questions ouvertes liées à nos résultats, suggérant des directions de recherche inspirées par les travaux de Haïm Brezis.
Revised:
Accepted:
Published online:
Keywords: Riesz fractional gradient, nonlocal gradient, representation formula, Sobolev inequality, Fourier transform, Brezis-type problems
Mots-clés : Gradient fractionnaire de Riesz, gradient non local, formule de représentation, inégalité de Sobolev, transformée de Fourier, problèmes de type Brezis
Stefano Buccheri 1; Augusto C. Ponce 2
CC-BY 4.0
@article{CRMATH_2025__363_G12_1377_0,
author = {Stefano Buccheri and Augusto C. Ponce},
title = {Recovering functions via doubly homogeneous nonlocal gradients},
journal = {Comptes Rendus. Math\'ematique},
pages = {1377--1406},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.800},
language = {en},
}
Stefano Buccheri; Augusto C. Ponce. Recovering functions via doubly homogeneous nonlocal gradients. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1377-1406. doi: 10.5802/crmath.800
[1] Symmetric decreasing rearrangement is sometimes continuous, J. Am. Math. Soc., Volume 2 (1989) no. 4, pp. 683-773 | DOI
[2] A fractional approach to strain-gradient plasticity: beyond core-radius of discrete dislocations, Math. Ann., Volume 391 (2025) no. 3, pp. 4063-4115 | DOI | Zbl
[3] Non-local gradients in bounded domains motivated by continuum mechanics: fundamental theorem of calculus and embeddings, Adv. Nonlinear Anal., Volume 12 (2023) no. 1, 20220316, 48 pages | Zbl
[4] Nonlocal gradients: fundamental theorem of calculus, Poincaré inequalities and embeddings, J. Lond. Math. Soc. (2), Volume 112 (2025) no. 2, e70277, 53 pages | DOI | MR | Zbl
[5] On the equation and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI
[6] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315 | DOI
[7] Another look at Sobolev spaces, Optimal control and partial differential equations (José Luis Menaldi; Edmundo Rofman; Agnès Sulem, eds.), IOS Press, 2001, pp. 439-455 | Zbl
[8] Limiting embedding theorems for when and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 | DOI
[9] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math., Inst. Hautes Étud. Sci. (2004) no. 99, pp. 1-115 | Numdam | DOI
[10] How to recognize constant functions. A connection with Sobolev spaces, Russ. Math. Surv., Volume 57 (2002) no. 4, pp. 693-708 | DOI
[11] Sobolev maps to the circle — From the perspective of analysis, geometry, and topology, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser/Springer, 2021 no. 96 | Zbl
[12] Non-local approximations of the gradient, Confluentes Math., Volume 15 (2023), pp. 27-44 | MR | Numdam
[13] A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II, Comptes Rendus. Mathématique, Volume 360 (2022), pp. 589-626 | DOI
[14] A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up, J. Funct. Anal., Volume 277 (2019) no. 10, pp. 3373-3435 | Zbl
[15] A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 3, pp. 493-540 | DOI | MR | Zbl
[16] Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., Volume 255 (2008) no. 12, pp. 3407-3430 | DOI
[17] Nonlocal operators with applications to image processing, Multiscale Model. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | DOI
[18] Classical Fourier analysis, Graduate Texts in Mathematics, Springer, 2014 no. 249 | DOI
[19] Inequalities, Cambridge Mathematical Library, Cambridge University Press, 1988 | Zbl | MR
[20] The analysis of linear partial differential operators I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 | Zbl | DOI | MR
[21] On some composition formulas, Proc. Am. Math. Soc., Volume 10 (1959), pp. 433-437 | DOI
[22] Fourier transform of homogeneous radial distributions https://r-grande.github.io/... (Unpublished notes)
[23] On limiting embeddings of Besov spaces, Stud. Math., Volume 171 (2005) no. 1, pp. 1-13 | DOI
[24] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 Erratum: J. Funct. Anal. 201(2003), 298–300 | Zbl
[25] Fractional vector calculus for fractional advection-dispersion, Phys. A: Stat. Mech. Appl., Volume 367 (2006), pp. 181-190 | DOI
[26] Localization of nonlocal gradients in various topologies, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1–2, pp. 253-279 | DOI
[27] Convolution operators and spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | Zbl
[28] Interpolación, espacios de Lorentz y teorema de Marcinkiewicz, Cursos y Seminarios de Matemática, Universidad de Buenos Aires, 1965 no. 20 | MR | Zbl
[29] Elliptic PDEs, measures and capacities, EMS Tracts in Mathematics, European Mathematical Society, 2016 no. 23 | DOI
[30] A boxing inequality for the fractional perimeter, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 20 (2020) no. 1, pp. 107-141 | Zbl
[31] Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, 1993 | MR | Zbl
[32] An -type estimate for Riesz potentials, Rev. Mat. Iberoam., Volume 33 (2017) no. 1, pp. 291-303 | DOI
[33] On a new class of fractional partial differential equations, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 321-336 | DOI
[34] On a new class of fractional partial differential equations II, Adv. Calc. Var., Volume 11 (2018) no. 3, pp. 289-307 | DOI
[35] Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Contin. Mech. Thermodyn., Volume 32 (2020) no. 1, pp. 207-228 | DOI
[36] An optimal Sobolev embedding for , J. Funct. Anal., Volume 279 (2020) no. 3, 108559, 26 pages | DOI | MR
[37] Estimates for -vector fields, Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 181-186 | DOI | MR
[38] Weakly differentiable functions, Graduate Texts in Mathematics, Springer, 1989 no. 120 | DOI
Cited by Sources:
Comments - Policy
