Let be a transcendental meromorphic function on , and be two polynomials with . In this paper, we prove that: if (a nonzero constant), except possibly finitely many, then has infinitely many zeros. Our result extends or improves some previous related results due to Bergweiler–Pang, Pang–Nevo–Zalcman, Wang–Fang, and the author, et. al.
Accepted:
Published online:
Yan Xu 1; Shirong Chen 1; Peiyan Niu 2
@article{CRMATH_2020__358_6_753_0, author = {Yan Xu and Shirong Chen and Peiyan Niu}, title = {Picard-Hayman behavior of derivatives of meromorphic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {753--756}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.96}, language = {en}, }
TY - JOUR AU - Yan Xu AU - Shirong Chen AU - Peiyan Niu TI - Picard-Hayman behavior of derivatives of meromorphic functions JO - Comptes Rendus. Mathématique PY - 2020 SP - 753 EP - 756 VL - 358 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.96 LA - en ID - CRMATH_2020__358_6_753_0 ER -
Yan Xu; Shirong Chen; Peiyan Niu. Picard-Hayman behavior of derivatives of meromorphic functions. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 753-756. doi : 10.5802/crmath.96. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.96/
[1] On the derivatives of meromorphic functions with multiple zeros, J. Math. Anal. Appl., Volume 278 (2003) no. 2, pp. 285-292 | DOI | MR | Zbl
[2] Picard values of meromorphic functions and their derivatives, Ann. Math., Volume 70 (1959), pp. 9-42 | DOI | MR | Zbl
[3] Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, 1964 | Zbl
[4] On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn., Ser. A I, Volume 240 (1957), pp. 1-9 | MR | Zbl
[5] Picard–Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electron. Res. Announc. Am. Math. Soc., Volume 12 (2006), pp. 37-43 | DOI | MR | Zbl
[6] Derivatives of meromorphic functions with multiple zeros and rational functions, Comput. Methods Funct. Theory, Volume 8 (2008) no. 2, pp. 483-491 | DOI | MR | Zbl
[7] Normal families and shared values, Bull. Lond. Math. Soc., Volume 32 (2000) no. 3, pp. 325-331 | DOI | MR | Zbl
[8] Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sin., New Ser., Volume 14 (1998) no. 1, pp. 17-26 | DOI | MR | Zbl
[9] Picard values and derivatives of meromorphic functions, Kodai Math. J., Volume 28 (2005) no. 1, pp. 99-105 | MR | Zbl
Cited by Sources:
Comments - Policy