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Abstract

We construct examples of surfaces in hyperbolic space which do not satisfy the Chern—Lashof inequality (which holds for
immersed surfaces in Euclidean spade)citethisarticle: R. Langevin, G. Solanes, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
Nous construisons des exemples de surfaces dans I'espace hyperbolique qui ne satisfont pas I'inégalité de Chern—Lashof (q
est vérifiée pour les surfaces immergées dans I'espace euclidgem)citer cet article: R. Langevin, G. Solanes, C. R. Acad.

Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

For an immersion of a closed surfakeof genusg in Euclidean space, |, denote its Gauss curvature. Chern
and Lashof proved in [1] that

/|Ke| > 2n(2+ 2g). 1)

To get an analog of this inequality for immersionssify one must take into account not just the total absolute
extrinsic curvature but the so called 1-length, and the ardd.d¥lore precisely (see [2]), for certain constangs
c1, €2, fM c2|Ke| + c1h1 + co > 2 (2 + 2g), whereK, denotes the extrinsic curvature ahg p) is the average
over all the directions of the absolute values of the normal curvatures in
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For immersed surfaces in hyperbolic space, it was stated in [3] that, if the suffaseontained in a ball of

radiusr, then |, |K,| > Z”Cf:rfg). However, the inequality (1) was still expected to hold in the hyperbolic case [4].

For closed curves in hyperbolic space, a result better than the Fenchel-Fary—Milnor theorem for cRAves in
was proved in [5]. The inequality involves an extra area term.iLbe the geodesic curvature of a knGtin
hyperbolic space. For every pointe C, let A, be the area of the surface defined by the segments joinitag
all the points ofC. For some poink, | |k|ds > 47 + A,. In this paper, after giving some inequalities for total
absolute extrinsic and intrinsic curvature of surfaces in hyperbolic space, we construct examples showing that the
total absolute extrinsic curvature of a surface of geaan not be bounded by just?2 + 2g).

2. Extrinsic and intrinsic curvatures

Consider inR* the Lorentz metrid.(x, y) = x1y1 + x2y2 + x3y3 — x4ya. This defines a quadri@ in RP3. The
Klein model of hyperbolic 3-spacE? is the interior ofQ. Its metric corresponds to the restriction bfto the
hyperboloid{x € R* | L(x,x) = —1}.

In this model, totally geodesic planes are intersections of projective planes with the inte@oByf polarity
with respect taQ, the spacet of totally geodesic planes is identified to the exterioofThis space has a natural
pseudo-Riemannian metric which corresponds to the restrictiéntotthe hyperboloidx € R* | L(x, x) = 1}.

For an immersed smooth hypersurfade- H?2, total absolute curvatureis defined a#M |K.|, wherekK, is the
extrinsic curvature oM. Note that, sincél® is of constant curvature 1, by the Gauss equation (see [6, p. 128]),
the extrinsic curvature at a poiptof M is K, = K; + 1, wherekK; denotes the intrinsic curvature df at p. Thus,
if M is closed with genug, the Gauss—Bonnet theorem gives

/Ke=2n<2—2g>+A(M), @
M

whereA denotes the area.

The surfaceM is smooth, but below we consider the boundéiryf its convex hull which may not be smooth.
Nevertheless, fatonvex hypersurfaces the total absolute curvature can be defined as followssbeahe boundary
of a compact convex bod§ ¢ H2 with nonempty interior and lekK* C A be the set of planes that do not intersect
the interior of K. The boundans™* of K* is the set of supporting planes &f. If O* is the polar hyperplane of
some pointO interior to K, the affine charRP3\ 0* contains bothk and K*. In suitable affine coordinates,
Q is the unit sphere so th&* = {£ | sup, (£, -) < 1} and it is convex. IfS is smooth and strongly convex (with
positive definite second fundamental form everywhere) fieis also smooth. In generd; is rectifiable and has
a tangent plane almost everywhere. These planes are of spatial typ&rice they do not mee®. Therefore, we
can consider the area measureon S* with respect to the metric ofl. We define the total absolute curvature of
S to be A*(S*). From the results in [7], both definitions coincide in the case of smooth convex hypersurfaces.

Proposition 1. Let S bethe boundary of a compact convex body K . Thetotal curvatureof Sis A*(S*) = 4w + A(S).

Proof. If S is smooth this is a particular case of (2). It is known tlRatan be approximated (in the Hausdorff
metric) by a sequencegX,) of strongly convex bodies with smooth boundary. Clearly the polar dkifils- {£ |
sup, (&, -) < 1} converge tak *. We will see thatA*(S;7) converge taA*(S*) whereS; = 3K ;.

Take a finite collection of compact domaifissuch that J; T; = $* and7; N T; has null measuré # j). For
eachi, fix u; interior to 7;, consider the half-space containimgbounded by; = (u;)* and letr; be the orthogo-
nal projection of this half-space ont. Taking the domaing; small enough, there exist open convex sets" V;
such thatS; N yrl.‘l(.Q,») is the graph of some smooth convex functign Also, S* N ni_l(.Qi) is the graph of a
convex functionf. The functionsf, converge, uniformly on compact sets@f, to f (cf. [9, p. 90]). As a general
fact on convex functions (cf. [8, p. 115] or [9, p. 248]), the differentiafs donverge to ¢ almost everywhere
and with uniform bound in each compact subse@pf Now, U; = 7; (T;) is compact and, using dominated conver-
gence, we have lim*(S¥ N7, 1(U;)) = A*(S* N 7,71 (U;)) since the area of} Nz, (U;) in 2; x R endowed
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with a pseudo-Riemannian metric can be expressed&s;; N nl.‘l(Ui)) = fUi JIP(x, fn(x),df,(x))], where
P(x,y,z) is a polynomial inz of degree not greater than 2 whose coefficients are smooth functiofs oh
To finish we must prove that lim*(S7) =lim ), A*(S} N ni‘l(U,»)). However, this is clear since the measure of

T (yrl.‘l(Ui) N 7Tj_l(Uj) N S;) goes to 0 and we have uniform bounds on compact sets.
The following proposition shows that (1) holds for topological spheres.

Proposition 2. If M is a closed surface immersed in H3, then fM |K.| > 4 + A(S), where S is the boundary of
the convex hull of M. The equality sign holds only when M is convex.

Proof. ConsiderU C M the relative interior oy N S andU* C S* consisting of the planes tangenti at some
point of U. From the results in [7], the total extrinsic curvaturelbfis the area ot/* with respect to the metric
of A, [, K. = A*(U*). As itis known for Euclidean convex hull§,\ M is a generalized developable surface. This
means that the supporting planes at points§ §fM intersects, at least, in some line segment. This fact implies
(cf. [8, p. 115, (9.8)]) that the supporting planes at points §fM form a null measure subset §f. Thus,U* has
full measure inS*, A*(U*) = A*(§*) and [}, K. > [, Ke = A*(§%) =4n + A(S). O

For the intrinsic curvature, an analog to the Chern—Lashof theorem can be easily proved.

Proposition 3. Let M c H® be a closed surface of genus g immersed in the hyperbolic 3-space. Then
[y |Kil = 21(2+ 2g), where K; istheintrinsic curvature of M. Equality holds only for topological spheres with
nonnegative K; .

Proof. Let S be the boundary of the convex hull of andU the relative interior off N S. Setl(;r = maxK;, 0}

andK;” = —min{K;, 0}. From the proof of the last proposition,
/Kl*9/[(1*2/[@»=/(Ke—1)=4n+A(S)—A(U)>4;r. 3)
M U U U
On the other hand,
/K,» :/K;L —/K; =21(2-2g). 4
M M M

Comparing (3) and (4) we gdi, K;” > 4rg. O

3. Examples of surfacesin H?3

We will construct examples of surfaces showing that (1) does not hdifir_et us choose the affine chart
RP3\ {x* = 0}, nowH? is identified with the open unit ball® in R3. The corresponding metric can be written as

1 2 r2
=22 i
where(r, 0) are polar coordinates in the origin.
In this model, geodesic lines look like Euclidean chord®dfand intersections of Euclidean planes wiih
are totally geodesic. As a consequence of this, in a point of a subfaceB®, the extrinsic curvature off as an
immersion inH2 and the curvature o/ as a surface ifR3® have the same sign. Indeed, the extrinsic curvature is
negative if and only if the tangent totally geodesic plane intersects the surface locally in two transverse curves.
Consider the Euclidean culie= {|x!| < 1/2} c B (see Fig. 1). Modifying a small neighborhood of the corners
of C we can get a convex domaifi’ with smooth boundary. For eveny, drill in C’, 4" vertical Euclidean
cylindrical holes with radius A8 - 2"). The boundary of this domain is a non-smooth surface of gefius 4
Modifying again a small neighborhood of the corners, we can get a smooth siMfasach that all the points
insideC’ have nonpositive curvature for the Euclidean metric, therefore also for the hyperbolic metric.

do?, (5)

g:
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Fig. 1. Geodesic line, totally geodesic plane and the sufacén the Klein model.

Let K, denote again the extrinsic curvatureKlf- is the positive part ok,

/|Ke|=2/1<j—/1<e.

Mn M, Mn
Then, using (2)

/|Ke|=2/Ke—zn(z—zg)—An=2(4n+A’)—2n(2—2g)—An=2n(2+2g)+2A’—An,
M, aC’

whereA,, andA’ denote, respectively, the areasigf andC’. Comparing (5) to the expression of Euclidean metric

in polar coordinates, any vector @fB° has a greater length with the hyperbolic metric than with the Euclidean
one. Hence, the hyperbolic area of any surface will be also greater than the Euclidean area in this model. Since the
Euclidean total area of the cylindrical holes izs(% —2¢) 8_1,, - 4" the Euclidean areas @f,, go to infinity and so

do the hyperbolic areas. Then, fobig enoughA,, > 2A’, so the total absolute extrinsic curvatureMf cannot

be bounded by2(2 + 2g). It remains the question of deciding if (1) holds for tori.
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