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Abstract

We investigate the logarithmic large deviation asymptotics for anisotropic norms of Gaussian random functions of two
variables. The problem is solved by the evaluation of the anisotropic norms of corresponding integral covariance operators.
We find the exact values of such norms for some important classes of Gaussian fields.To cite this article: M. Lifshits et al.,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous étudions les grandes déviations logarithmiques pour les normes anisotropes des champs gaussiens aléatoires de
deux variables. Le problème est résolu en calculant des normes anisotropes pour les opérateurs intégraux engendrés par les
covariances. Nous trouvons des valeurs exactes de telles normes pour quelques classes importantes de champs gaussiens.Pour
citer cet article : M. Lifshits et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. We start with some classical examples which motivated our research. Consider three Gaussian fields on the
unit squareI2: the Brownian sheetW1(x1, x2) with the covarianceK1(x1, x2;y1, y2) = (x1 ∧ y1)(x2 ∧ y2), the
Brownian pillowW2(x1, x2) with the covarianceK2(x1, x2;y1, y2) = (x1 ∧ y1 − x1y1)(x2 ∧ y2 − x2y2), and the
Kiefer fieldW3(x1, x2) with the covarianceK3(x1, x2;y1, y2) = (x1 ∧ y1)(x2 ∧ y2 − x2y2).

For any fieldξ on I2 and for 1� p1,p2 � ∞ introduce the anisotropic norm

‖ξ‖p1,p2 =
[ 1∫

0

[ 1∫
0

∣∣ξ(x1, x2)
∣∣p1 dx1

]p2/p1

dx2

]1/p2

. (1)
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We are interested in the logarithmic tail behavior of this norm for our three fields, in other words, we look for the
constantsCi = limz→∞ z−2 lnP {‖Wi‖p1,p2 � z}, i = 1,2,3.

Such constants are important, in particular, when calculating the Bahadur efficiency of nonparametric integral
tests of independence, see [9]. The following solution is a special case of the results in [8]. Let

σ(p) = 2

pπ

(
1+ p

2

)(p−2)/p(
�(1

2 + 1
p
)

�(1+ 1
p
)

)2

, 1 � p.

It was proved in [8] that

lim
z→∞ z−2 lnP

{‖W1‖p1,p2 � z
} = −(

2σ(p1)σ (p2)
)−1

,

lim
z→∞ z−2 lnP

{‖W2‖p1,p2 � z
} = −8

(
σ(p1)σ (p2)

)−1
,

lim
z→∞ z−2 lnP

{‖W3‖p1,p2 � z
} = −2

(
σ(p1)σ (p2)

)−1
.

The aim of this Note is to obtain such large deviation results for a larger class of Gaussian fields.

2. First, we recall a general approach to the calculation of large deviation constants. LetTj , j = 1,2, be
two measure spaces and letX(t1, t2), tj ∈ Tj , be a Gaussian random function on the setT = T1 × T2 with
the covariance functionK(s1, s2; t1, t2) on T × T . Let Lp1,p2(T ) be the anisotropic Lebesgue space with the
norm (1), 1� p1,p2 � ∞. Consider the integral operatorK :Lr1,r2(T ) → Lp1,p2(T ) defined by the formula
(Kg)(s1, s2) = ∫

T K(s1, s2; t1, t2)g(t1, t2)dt1 dt2 with the norm‖K‖(r1,r2)→(p1,p2). Let qj , j = 1,2, be the dual
exponents topj , i.e.,p−1

j +q−1
j = 1. It is known, see [6, Section 12], that the constant‖K‖(q1,q2)→(p1,p2) describes

the logarithmic large deviation asymptotics ofX in the spaceLp1,p2(T ), namely,

lim
z→∞ z−2 lnP

{‖X‖p1,p2 � z
} = (

2‖K‖(q1,q2)→(p1,p2)

)−1
. (2)

We want to calculate‖K‖(q1,q2)→(p1,p2) for as large class of fieldsX as possible. For each of three classical
fields described above we have the remarkable property

K(s1, s2; t1, t2) = K1(s1, t1) · K2(s2, t2) (3)

for some covariancesK1(·, ·) andK2(·, ·). We wonder if the result on large deviations of the anisotropic norms for
fieldsW1–W3 can be generalized to the class of Gaussian fields satisfying the property (3). Towards this aim, let
us slightly reformulate our problem in terms of the theory of tensor products.

The tensor product of integral operators with the kernelsK1 andK2 is the integral operator with the kernel
K1 ⊗ K2((s1, s2), (t1, t2)) = K1(s1, t1) · K2(s2, t2) acting fromLr1,r2(T ) into Lp1,p2(T ) according to the formula
((K1 ⊗ K2)g)(s1, s2) = ∫

T K1(s1, t1) · K2(s2, t2)g(t1, t2)dt1 dt2.

Theorem 1. Consider two integral operatorsKj :Lrj (Tj ) → Lpj (Tj ), j = 1,2, with the norms‖Kj‖rj→pj . Let
one of the following conditions be fulfilled: (1) K2 � 0; (2)p2 � p1 � r2; (3) p2 � r1 � r2. Then

‖K1 ⊗ K2‖(r1,r2)→(p1,p2) = ‖K1‖r1→p1 · ‖K2‖r2→p2. (4)

Remark. In the isotropic case (p1 = p2, r1 = r2) the functional analysts have extensively investigated whether the
equality

‖K1 ⊗ K2‖r→p = ‖K1‖r→p · ‖K2‖r→p (5)

is true. Bennett [1] was apparently the first who proved (for operators acting fromlr to lp) that (5) is true for any
K1 andK2 iff 1 � r � p � ∞. Later his result was rediscovered and generalized, see, e.g., [10]. Therefore, (4)
cannot be true without additional assumptions.

Let us simplify the large deviation result (2) for the anisotropic norm of Gaussian fields having the covariance
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structure (3). In this caserj = qj , so that the conditions (2) and (3) of Theorem 1 are equivalent. Thus we obtain
the next theorem.

Theorem 2. Assume that a Gaussian field has the covariance(3), and let one of the following conditions be fulfilled:
(1) K2 � 0; (2)p2 � p1 � q2. Then the following logarithmic large deviation asymptotics holds:

lim
z→∞ z−2 lnP

{‖X‖p1,p2 � z
} = −(

2‖K1‖q1→p1 · ‖K2‖q2→p2

)−1
. (6)

Using this result, we can reduce the calculation of “two-dimensional” norm to that of “one-dimensional” ones
which may be already known or may be calculated independently in a much easier way. The classical Brownian
fieldsW1–W3 have nonnegative covariances and satisfy the conditions of Theorem 2. Hence the results of [8] stated
above follow from Theorem 2. On the other hand, there are important examples of Gaussian fields which satisfy (3)
but have sign-alternating covariances. In this case we can establish the asymptotic behavior (6) only under some
additional assumptions onpj , j = 1,2.

We mention the following generalization of Theorem 1 in the spirit of the theory of tensor products. It concerns
more general operators and more general norms in functional spaces.

Theorem 3. Let 1 � r � p. Consider continuous linear operatorsK1 :X1 → Y1, K2 :X2 → Y2, whereX1, Y2 are
arbitrary Banach spaces whileY1 = Lp(T1) and X2 = Lr(T2). Then the tensor productK1 ⊗ K2 :X1 ⊗ X2 =
Lr(T2;X1) → Y1 ⊗ Y2 = Lp(T1;Y2) is continuous and‖K1 ⊗K2‖ � ‖K1‖ · ‖K2‖.

Parts (2) and (3) of Theorem 1 can be deduced from this result.

3.

Example 1 (Rothmann field). When constructing the tests of independence on a torus, Rothmann introduced in [11]
the Gaussian fieldρ(x1, x2) with zero mean and the covariance functionC(x1, x2;y1, y2) = C(x1, y1)C(x2, y2)

with the “marginal” kernelC(x, y) = (x ∧y − 1
2(x +y)+ 1

2(x−y)2+ 1
12). The covariance of this field satisfies (3)

but is not nonnegative. Denote byC the integral operator with the kernelC(x1, x2;y1, y2) and byC the integral
operator with the kernelC(x, y). Applying Part 2 of Theorem 2 we obtain that for 2� p2 � ∞, q2 � p1 � p2

‖C‖(q1,q2)→(p1,p2) = ‖C ⊗ C‖(q1,q2)→(p1,p2) = ‖C‖q1→p1 · ‖C‖q2→p2.

We just have to evaluate the constantsτ (p) := ‖C‖q→p which may be treated in terms of the extremal problem

1

(τ (p))1/2 = min
‖u′‖2

‖u − ∫ 1
0 u(x)dx‖p

, u � 0, u(0) = u(1) = 0.

It was proved in [7] (see there the history of the problem) that for 1� p � 6 one hasτ (p) = σ(p)/16, while
for p > 6 it holds [2] τ (p) > σ(p)/16. Thus at least for 2� p2 � 6, q2 � p1 � p2 we derive from (6) that
limz→∞ z−2 lnP {‖ρ‖p1,p2 � z} = −128(σ (p1)σ (p2))

−1.

Example 2 (Integrated Brownian sheet, pillow and related fields). Let W2(x1, x2) be the Brownian pillow on the
unit square.

Consider the integrated Brownian pillowY2(s1, s2) = ∫ s1
0

∫ s2
0 W2(x1, x2)dx2dx1 having the covariance function

D2(s1, s2; t1, t2) = D2(s1, t1)D2(s2, t2), whereD2(s, t) = 1
2 st (s ∧ t) − 1

6 (s ∧ t)3 − 1
4 s2t2 � 0. We can apply Part

1 of Theorem 2, whenever we know the values of corresponding norms. Consider the Hilbert casep1 = p2 = 2.
The spectrum of the integral operator with the kernelD2 was found in [3]. Letµ1 < µ2 < · · · be the solutions of
the equation tan(µ) + tanh(µ) = 0. Thenλn = (µn)

−4, n � 1. In particular,λ1 ≈ 3.20× 10−2. On the other hand,
it is well known that the norm of symmetric operator in Hilbert space is equal to its first eigenvalue [4, Chapter V].
Hence in the casep1 = p2 = 2 we obtain limz→∞ z−2 lnP {‖Y2‖2 � z} = −(2λ2

1)
−1 ≈ −489.39.

Another case covered by our theorems is the case when one of the exponents equals 2, and the another equals
infinity. The value of the norm of the integral operator acting fromL1(T ) into L∞(T ) is also well-known (see
again [4, Chapter V]), namely,‖D2‖1→∞ = sups,t D2(s, t) = 1/12, so that we get
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lim
z→∞ z−2 lnP

{‖Y2‖2,∞ � z
} = lim

z→∞ z−2 lnP
{‖Y2‖∞,2 � z

} = −6λ−1
1 ≈ −187.71. (7)

We may consider similarly the integrated Wiener sheetY1(s1, s2) = ∫ s1
0

∫ s2
0 W1(x1, x2)dx1 dx2 which is the Gauss-

ian field with the covarianceD1(s1, s2; t1, t2) = D1(s1, t1) ·D1(s2, t2), whereD1(s, t) = 1
2st (s∧ t)− 1

6(s∧ t)3 � 0.
Arguing as in [3] we see that the spectrum of the integral operator with the kernelD1 consists of eigenvalues

λ̃n = ν−4
n , n � 1, whereν1 < ν2 < · · · are the solutions of the equation cos(ν)cosh(ν) + 1 = 0. It follows that the

first eigenvalue is̃λ1 ≈ 8.09· 10−2. Hence

lim
z→∞ z−2 lnP

{‖Y1‖2 � z
} = −(

2λ̃2
1

)−1 ≈ −76.42. (8)

One can treat other integrated fields including the integrated Kiefer field in the same way getting the results anal-
ogous to (7) and (8).

Example 3 (Ornstein–Uhlenbeck sheet). Consider the Ornstein–Uhlenbeck sheet onI2 which can be defined
as a Gaussian fieldU(s1, s2) with zero mean and covarianceU(s1, s2; t1, t2) = exp(−|s1 − t1| − |s2 − t2|).
This covariance fits Part 1 of Theorem 2. We must find the norms of the corresponding univariate integral
operators acting fromLq into Lp . Actually we have the solution only forp = 2. We need the first eigenvalue

of the integral equationλf (t) = ∫ 1
0 exp(−|s − t|)f (s)ds. The spectrum of this equation was found in [5]. It

consists of eigenvalueŝλn = 2(η2
n + 1)−1, n � 1, whereη1 < η2 < · · · are the roots of the equation 2η cos(η) =

(η2 − 1) · sin(η). Solving this equation numerically we find the first eigenvalueλ̂1 ≈ 0.74. It follows that
limz→∞ z−2 lnP {‖U‖2 � z} = −(2λ̂2

1)
−1 ≈ −0.92.

Example 4 (Fractional Brownian sheet). Consider a Gaussian field with the zero mean and covariance

Bα(s1, s2; t1, t2) = β(s1, t1) · β(s2, t2), 0< α < 2, (9)

whereβ(s, t) = 1
2(s

α + tα − |s − t|α).
The univariate kernels in (9) are nonnegative, thus Part 1 of Theorem 2 works. However, the norms and

eigenvalues for the operators with such kernels are unknown forα �= 1.
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