Mathematical Analysis

# An example of a $C^{1,1}$ polyconvex function with no differentiable convex representative 

# Un exemple de fonction $C^{1,1}$ polyconvexe sans reprèsentant convexe differentiable 

Jonathan Bevan<br>Mathematical Institute, University of Oxford, OX1 3LB Oxford, UK<br>Received 13 October 2002; accepted 31 October 2002<br>Presented by Phillipe G. Ciarlet


#### Abstract

We construct a $C^{1,1}$ polyconvex function $W$ such that there exists a fixed $2 \times 2$ matrix $Y$ with the property that all convex representatives of $W$ have at least two distinct subgradients (and are hence not differentiable) at the point ( $Y$, det $Y$ ), showing in particular that a polyconvex function can be smoother than any of its convex representatives. To cite this article: J. Bevan, C. R. Acad. Sci. Paris, Ser. I 336 (2003). © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.


## Résumé

On construit une fonction $C^{1,1}$ polyconvexe $W$ tel qu'il existe une matrice $2 \times 2 Y$ satisfaisant la propriété suivante : tous les representants convexes de $W$ ont au moins deux sousgradients distincts (et ne sont donc pas differentiable) au point ( $Y$, det $Y$ ). Ceci montre, en particulier, qu'une fonction polyconvexe peut être plus differentiable que tous ses representants convex. Pour citer cet article: J. Bevan, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

## 1. Introduction and notation

We denote the real $2 \times 2$ matrices by $\mathbf{R}^{2 \times 2}$ and define the function $R: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}^{2 \times 2} \times \mathbf{R}$ by $R(Z)=(Z$, det $Z)$. We recall that a convex representative $\varphi$ of a polyconvex function $W$ must satisfy $W(A)=\varphi(R(A))$ for all $A$ in $\mathbf{R}^{2 \times 2}$, and that there is a largest such (see [5] and [1]), $\varphi_{W}$, given by

[^0]$$
\varphi_{W}(A, \delta)=\inf \left\{\sum_{i=1}^{6} \lambda_{i} W\left(A_{i}\right), \sum_{i=1}^{6} \lambda_{i}=1, \lambda_{i} \geqslant 0, \sum_{i=1}^{6} \lambda_{i} R\left(A_{i}\right)=(A, \delta)\right\}
$$

If a polyconvex function $W$ has a strictly convex representative then $W$ is said to be strictly polyconvex. Suppose $\Omega \subset \mathbf{R}^{n}$ is a bounded domain and that $u$ is a fixed mapping in the Sobolev space $W^{1,2}\left(\Omega, \mathbf{R}^{m}\right)$. Consider, when $n=m=2$ and $\Omega$ is the unit ball in $\mathbf{R}^{2}$, the following problem: find a nonnegative strictly polyconvex function $f: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}$ which satisfies

$$
\begin{equation*}
\{D u(x), x \in \Omega\} \subset\{\xi, f(\xi)=0\} \tag{1}
\end{equation*}
$$

For example, when $u: \Omega \rightarrow \mathbf{R}^{2}$ is defined in polar coordinates by $u(r, \theta)=\frac{1}{\sqrt{2}}(r, 2 \theta)$ it is shown in [4] that a solution $f$ to the problem exists. It follows that $u$ is a singular minimizer of $I(v)=\int_{\Omega} f(D v(x)) \mathrm{d} x$ among $v \in W^{1,2}\left(\Omega, \mathbf{R}^{2}\right)$ satisfying $\left.v\right|_{\partial \Omega}=u(\cdot)$. If in addition $f$ can be smooth and strongly quasiconvex in the sense of [6] then Evans' partial regularity theorem would be optimal in dimensions $n=m=2$. This is certainly the case when $n$ and $m$ are large enough, as was first shown by Nečas in [7] and later by Šverák and Yan in [10], who gave an example of a singular minimizer of a smooth strongly convex functional in dimensions $m=5, n=3$.

In seeking a strictly polyconvex function satisfying (1) one is naturally led to study the properties of its possible convex representatives, in particular their regularity. It is trivially true that $f$ is at least as differentiable as its smoothest convex representative, but is it true that there is a convex representative which is as smooth as $f$ is? We show that the answer is in general no. We do not know if the function $W$ constructed in this paper is smoother than $C^{1,1}$, or whether there is an example with a possibly different smooth $W$.

The example in this Note is reminiscent of the loss of regularity which occurs when an isotropic, frame indifferent function $W: D \rightarrow \mathbf{R}$, is expressed as $W(F)=H\left(v_{1}+v_{2}, v_{1} v_{2}\right)$, where $D$ is an $\mathrm{SO}(2)$-invariant subset of $\left\{\xi \in \mathbf{R}^{2 \times 2}\right.$, $\left.\operatorname{det} \xi>0\right\}$ and $v_{1}, v_{2}$ are the principal values of $F$. The remarks in [2, Theorem 6.9] show that $H$ is in general less differentiable than $W$.

We denote the subdifferential of a convex function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ at a point $x$ by $\partial f(x)$ and recall that this is the set

$$
\begin{equation*}
\left\{v \in \mathbf{R}^{n}, f(U) \geqslant f(X)+v \cdot(U-X) \text { for all } U \text { in } \mathbf{R}^{n}\right\} \tag{2}
\end{equation*}
$$

where "." represents the usual Euclidean inner product. For later use we define the inner product of two matrices $E$ and $F$ in $\mathbf{R}^{2 \times 2}$ by $E: F=\operatorname{tr} E^{\mathrm{T}} F$. We define $|F|_{2}^{2}=F: F$. As usual we write $B(A, r)$ for the open ball with radius $r$ and centre $A$ in the topology induced by $|\cdot|_{2}$. We reserve $|\cdot|$ for the Euclidean norm on $\mathbf{R}^{2 \times 2} \times \mathbf{R}$, and write $|(A, \delta)|^{2}=|A|_{2}^{2}+\delta^{2}$. By [9, Theorem 23.4] a real valued convex function $f$ defined on all of $\mathbf{R}^{n}$ has a nonempty, compact and convex subdifferential $\partial f(x)$ at each $x$, whose elements are then referred to as subgradients of $f$ at $x$. Further, by [9, Theorem 25.1], $f$ is differentiable at the point $x \in \mathbf{R}^{n}$ if and only if $\partial f(x)$ consists of a singleton, written $D f(x)$. Finally, for any function $f: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}$ we use the notation $f^{\text {pc }}$ to represent the largest polyconvex function majorised by $f$ (identically $-\infty$ if no such function exists). For further details on polyconvexity see $[1,5]$ and [8].

## 2. The counterexample

Fix $Y \in \mathbf{R}^{2 \times 2}$ such that $\operatorname{det} Y<0$ and define the function $\omega: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}$ by

$$
\omega(Z)=\max \{0, \operatorname{det}(Z-Y)\}
$$

It is easy to see that $\omega$ is polyconvex (for example, let

$$
\begin{equation*}
\phi(A, \delta)=\delta+\operatorname{det} Y-\operatorname{cof} Y: A \tag{3}
\end{equation*}
$$

note that $\psi(A, \delta) \stackrel{\text { def }}{=} \max \{0, \phi(A, \delta)\}$ is convex, being the maximum of two convex functions, and that $\omega(Z)=$ $\psi(R(Z))$ ). Fix $X \in \mathbf{R}^{2 \times 2}$ such that $\operatorname{det}(X-Y)>0$. For any positive real number $r$ let the set of $2 \times 2$ matrices $K(r)$ be defined by

$$
\begin{equation*}
K(r)=B(0, r) \cup B(X, r) \tag{4}
\end{equation*}
$$

By continuity of $f(Z) \stackrel{\operatorname{def}}{=} \operatorname{det}(Z-Y)$ there exists $\tau>0$ such that $\omega(Z)=0$ if $Z \in B(0, \tau)$ and $\omega(Z)=f(Z)$ if $Z \in B(X, \tau)$, so that by taking $\varepsilon=\frac{1}{3} \min \{\tau, \operatorname{dist}(Y,\{0, X\})\}$ we ensure that $\omega$ is smooth on $K(2 \varepsilon)$ and $\operatorname{dist}(Y, K(2 \varepsilon)) \geqslant \varepsilon$. Let $\eta$ be a smooth cut-off function whose support lies in $K(2 \varepsilon)$ and which satisfies $0 \leqslant \eta \leqslant 1$, with $\eta(Z)=1$ if $Z \in K(\varepsilon)$. Define the function $g: \mathbf{R}^{2 \times 2} \rightarrow \mathbf{R}$ by

$$
g(Z)=(1-\eta(Z)) \frac{|Z-Y|^{2}}{2}+\eta(Z) \omega(Z)
$$

Observe that since $|Z-Y|^{2} / 2 \geqslant \omega(Z)$ for all $Z$ we have $g(Z) \geqslant \omega(Z)$ for all $Z$, and that $g$ is smooth with $\left|D^{2} g(\cdot)\right| \leqslant c$ for some fixed positive constant $c$. By the comments in the opening paragraph of [3, Section 4], [3, Proposition 3.7] also applies to polyconvex envelopes; we can then conclude by [3, Remark 1, p. 347] that

$$
W(Z) \stackrel{\text { def }}{=} g^{\mathrm{pc}}(Z)
$$

is $C_{\text {loc }}^{1,1}$. Using this and the following lemma we claim $D W$ is in fact globally Lipschitz. By an abuse of notation we let $|\xi|=|\xi|_{2}$.

Lemma 2.1. $\xi$ is a point of strict convexity of $g$ if $|\xi|$ is sufficiently large.
Proof. Fix $\xi$ such that $\operatorname{dist}(\xi, K(2 \varepsilon))>\varepsilon$ and let $m=\sup \left\{\left.\left|\omega(A)-\frac{1}{2}\right| A-\left.Y\right|^{2} \right\rvert\,, A \in K(2 \varepsilon)\right\}$. By definition of $g$ it follows that

$$
\begin{equation*}
g(Z) \geqslant \frac{1}{2}|Z-Y|^{2}-m \eta(Z) \tag{5}
\end{equation*}
$$

for all $Z$. We wish to show $g(Z)-g(\xi)>D g(\xi):(Z-\xi)$ for all $Z \neq \xi$, provided $|\xi|$ is large enough; by (5) it is sufficient to prove

$$
\frac{1}{2}|Z-Y|^{2}-m \eta(Z)-\frac{1}{2}|\xi-Y|^{2}>\xi: Z+\xi: Y-Y: Z-|\xi|^{2}
$$

which is satisfied if and only if

$$
\begin{equation*}
\frac{1}{2}|\xi-Z|^{2}-m \eta(Z)>0 \tag{6}
\end{equation*}
$$

Now for large enough $|\xi|, \inf \left\{\frac{1}{2}|\xi-Z|^{2}, Z \in K(2 \varepsilon)\right\} \geqslant 2 m$, so that (6) holds for all $Z \neq \xi$.
We claim that $W(\xi)=g(\xi)$ for $\xi$ such that Lemma 2.1 holds. By [3, Section 4, Eq. (4.1)],

$$
W(\xi)=\inf \left\{\sum_{i=1}^{6} \lambda_{i} g\left(\xi_{i}\right), \lambda_{i} \geqslant 0, \sum_{i=1}^{6} \lambda_{i}=1, \sum_{i=1}^{6} \lambda_{i} R\left(\xi_{i}\right)=R(\xi)\right\}
$$

so we can apply Lemma 2.1 with $Z=\xi_{i}$ to each summand in $\sum_{i=1}^{6} \lambda_{i} g\left(\xi_{i}\right)$ to deduce $W(\xi) \geqslant g(\xi)$. The reverse inequality is true by definition of the polyconvex envelope so that $W(\xi)=g(\xi)$ for all large enough $\xi$. It now follows easily that the derivative of $W$ is globally Lipschitz.

For future use we note that since $\omega$ is polyconvex and bounds $g$ below, $g \geqslant W \geqslant \omega$ on $\mathbf{R}^{2 \times 2}$; and since $g=\omega$ on $K(\varepsilon)$ we have $W=\omega$ on $K(\varepsilon)$. The following lemmas are used in Theorem 2.4, where we show that $W$ has the property stated in the title of this Note.

Lemma 2.2. Let $\varepsilon>0$ and let $\xi$ be any fixed $2 \times 2$ matrix. Then $R(\xi)$ lies in the interior of the convex hull of the $\operatorname{set}\{(U, \operatorname{det} U), U \in B(\xi, \varepsilon)\}$.

Proof. Suppose not. Then there exist $C \in \mathbf{R}^{2 \times 2}, c \in \mathbf{R}$ not both zero, such that $(C, c) \cdot R(\xi+\tau A) \geqslant(C, c) \cdot R(\xi)$ for all $A \in B(0, \varepsilon)$ and $|\tau| \leqslant 1$, which holds if and only if $\tau(A: C+c A: \operatorname{cof} \xi)+c \tau^{2} \operatorname{det} A \geqslant 0$. Dividing through by $\tau^{2} \neq 0$ and letting $\tau \rightarrow 0+$ it follows that $A: C+c A: \operatorname{cof} \xi \geqslant 0$. Letting $\tau \rightarrow 0-$ we have $A: C+c A: \operatorname{cof} \xi=0$ for all $A \in B(0, \varepsilon)$, implying that $c \operatorname{det} A \geqslant 0$ for such $A$. Choose in particular $A$ such that $\operatorname{det} A \neq 0$ and let $\bar{A} \in B(0, \varepsilon)$ satisfy $\operatorname{det} \bar{A}=-\operatorname{det} A$ (for example, exchange the rows of $A$ and call the result $\bar{A}$ ). Then $c \operatorname{det} \bar{A} \geqslant 0, c \operatorname{det} A \geqslant 0$ together imply $c=0$, from which it follows that $C: A=0$ for all $A \in B(0, \varepsilon)$. Hence $C=0$, a contradiction.

Lemma 2.3. Let $h=h(A, \delta)$ be convex, $\xi \in \mathbf{R}^{2 \times 2}$ and suppose that $h(A, \operatorname{det} A)=0$ for $|A-\xi|$ sufficiently small. Then $h(A, \delta)=0$ for $|(A, \delta)-R(\xi)|$ sufficiently small.

Proof. Suppose $\tau$ is such that $h(R(A))=0$ if $|A-\xi|_{2}<\tau$. By Lemma 2.2, for sufficiently small $|(C, \delta)|$ we can write $(\xi+C, \operatorname{det} \xi+\delta)$ and $(\xi-C, \operatorname{det} \xi-\delta)$ as convex combinations of points in $\{R(A),|A-\xi|<\tau\}$, so by applying convexity of $h$ it follows that $h(\xi+C$, $\operatorname{det} \xi+\delta) \leqslant 0$ and $h(\xi-C$, $\operatorname{det} \xi-\delta) \leqslant 0$. But $0=h(\xi, \operatorname{det} \xi) \leqslant$ $\frac{1}{2}(h(\xi+C$, $\operatorname{det} \xi+\delta)+h(\xi-C$, $\operatorname{det} \xi-\delta)$ ), so that both terms on the right hand side are zero, concluding the proof.

Theorem 2.4. No convex representative of $W$ is differentiable at $R(Y)$.
Proof. Let $\varphi$ be any convex representative of $W$. We will show that $\varphi$ must be differentiable at (in fact, smooth in a neighbourhood of) $R(0)$ and $R(X)$ by applying Lemma 2.3 twice, from which it will follow that $\partial \varphi(R(Y))$ is not a singleton. Hence by the remarks in the introduction $\varphi$ cannot be differentiable at $R(Y)$.

Since $W=\omega$ on $K(\varepsilon)$ we know $\varphi(R(A))=0$ for $A \in B(0, \varepsilon)$ and $\varphi(R(A))=\phi(R(A))$ for $A \in B(X, \varepsilon)$, where the affine function $\phi$ was defined in Eq. (3). Apply Lemma 2.3 to $h=\varphi, \xi=0$ to conclude that $\varphi(A, \delta)=0$ in a neighbourhood of $R(0)$. By convexity this implies $\varphi \geqslant 0$ everywhere. Hence, since we have $W(Y)=0$ it follows that $R(0) \in \partial \varphi(R(Y))$. Next apply Lemma 2.3 to $h(A, \delta)=\varphi(A, \delta)-\phi(A, \delta), \xi=X$ to deduce $\varphi(A, \delta) \geqslant W(Y)-\operatorname{cof} Y:(A-Y)+\delta-\operatorname{det} Y$ everywhere (again by convexity). In particular this gives $(-\operatorname{cof} Y, 1) \in \partial \varphi(R(Y))$.

Remark 2.1. Since $\varphi$ is differentiable in a neighbourhood of $R(0)$ and $R(X)$, the tangent hyperplanes $T_{0}$ and $T_{X}$, say, to the graph of $\varphi$ at $(R(0), W(0))$ and $(R(X), W(X))$ respectively are uniquely defined by $D \varphi(R(0))$ and $D \varphi(R(X))$ respectively. Thus an alternative way of concluding the proof would be simply to check $(R(Y), W(Y)) \in T_{0} \cap T_{X}$.

## Acknowledgement

It is a pleasure to thank John Ball for his helpful advice and suggestions.

## References

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) $337-403$.
[2] J.M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51 (1984) 699-728.
[3] J.M. Ball, B. Kirchheim, J. Kristensen, Regularity of quasiconvex envelopes, Calc. Var. 11 (2000) 333-359.
[4] J.J. Bevan, On singular minimizers of strictly polyconvex integral functionals, to appear..
[5] H. Busemann, G. Ewald, G.C. Shepherd, Convex bodies and convexity on Grassman cones, Math. Ann. 151 (1963) 1-41.
[6] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986) 227-268.
[7] J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in: Theory of Nonlinear Operators, Akademie-Verlag, Berlin, 1977, pp. 197-206.
[8] S. Müller, Variational models for microstructure and phase transitions, Lecture Notes, C.I.M.E. summer school, Cetraro, 1996.
[9] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[10] V. Şerák, X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations 10 (2000) 213-221.


[^0]:    E-mail address: bevan@maths.ox.ac.uk (J. Bevan).

    1631-073X/03/\$ - see front matter © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. doi:10.1016/S1631-073X(02)00015-8

