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Abstract

We construct aC1,1 polyconvex functionW such that there exists a fixed 2× 2 matrixY with the property that all convex
representatives ofW have at least two distinct subgradients (and are hence not differentiable) at the point(Y,detY), showing
in particular that a polyconvex function can be smoother than any of its convex representatives.To cite this article: J. Bevan,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

On construit une fonctionC1,1 polyconvexeW tel qu’il existe une matrice 2× 2 Y satisfaisant la propriété suivante : tous les
representants convexes deW ont au moins deux sousgradients distincts (et ne sont donc pas differentiable) au point(Y,detY).
Ceci montre, en particulier, qu’une fonction polyconvexe peut être plus differentiable que tous ses representants convex.Pour
citer cet article : J. Bevan, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction and notation

We denote the real 2×2 matrices byR2×2 and define the functionR : R2×2 → R2×2 ×R byR(Z)= (Z,detZ).
We recall that a convex representativeϕ of a polyconvex functionW must satisfyW(A) = ϕ(R(A)) for all A in
R2×2, and that there is a largest such (see [5] and [1]),ϕW , given by
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ϕW(A, δ)= inf

{
6∑
i=1

λiW(Ai),

6∑
i=1

λi = 1, λi � 0,
6∑
i=1

λiR(Ai)= (A, δ)

}
.

If a polyconvex functionW has a strictly convex representative thenW is said to be strictly polyconvex. Suppose
Ω ⊂ Rn is a bounded domain and thatu is a fixed mapping in the Sobolev spaceW1,2(Ω,Rm). Consider, when
n = m = 2 andΩ is the unit ball inR2, the following problem: find a nonnegative strictly polyconvex function
f : R2×2 → R which satisfies{

Du(x), x ∈Ω} ⊂ {
ξ, f (ξ)= 0

}
. (1)

For example, whenu :Ω → R2 is defined in polar coordinates byu(r, θ) = 1√
2
(r,2θ) it is shown in [4] that a

solution f to the problem exists. It follows thatu is a singular minimizer ofI (v) = ∫
Ω f (Dv(x))dx among

v ∈W1,2(Ω,R2) satisfyingv|∂Ω = u(·). If in addition f can be smooth and strongly quasiconvex in the sense
of [6] then Evans’ partial regularity theorem would be optimal in dimensionsn=m= 2. This is certainly the case
whenn andm are large enough, as was first shown by Nec̆as in [7] and later by̆Sverák and Yan in [10], who gave
an example of a singular minimizer of a smooth strongly convex functional in dimensionsm= 5, n= 3.

In seeking a strictly polyconvex function satisfying (1) one is naturally led to study the properties of its possible
convex representatives, in particular their regularity. It is trivially true thatf is at least as differentiable as its
smoothest convex representative, but is it true that there is a convex representative which is as smooth asf is? We
show that the answer is in general no. We do not know if the functionW constructed in this paper is smoother than
C1,1, or whether there is an example with a possibly different smoothW .

The example in this Note is reminiscent of the loss of regularity which occurs when an isotropic, frame
indifferent functionW :D→ R, is expressed asW(F)=H(v1 + v2, v1v2), whereD is an SO(2)-invariant subset
of {ξ ∈ R2×2, detξ > 0} andv1, v2 are the principal values ofF . The remarks in [2, Theorem 6.9] show thatH is
in general less differentiable thanW .

We denote the subdifferential of a convex functionf : Rn → R at a pointx by ∂f (x) and recall that this is the
set {

ν ∈ Rn, f (U)� f (X)+ ν · (U −X) for all U in Rn
}

(2)

where “·” represents the usual Euclidean inner product. For later use we define the inner product of two matrices
E andF in R2×2 by E :F = trETF . We define|F |22 = F : F . As usual we writeB(A, r) for the open ball with
radiusr and centreA in the topology induced by| · |2. We reserve| · | for the Euclidean norm onR2×2×R, and write
|(A, δ)|2 = |A|22 + δ2. By [9, Theorem 23.4] a real valued convex functionf defined on all ofRn has a nonempty,
compact and convex subdifferential∂f (x) at eachx, whose elements are then referred to as subgradients off atx.
Further, by [9, Theorem 25.1],f is differentiable at the pointx ∈ Rn if and only if ∂f (x) consists of a singleton,
writtenDf (x). Finally, for any functionf : R2×2 → R we use the notationf pc to represent the largest polyconvex
function majorised byf (identically−∞ if no such function exists). For further details on polyconvexity see [1,5]
and [8].

2. The counterexample

Fix Y ∈ R2×2 such that detY < 0 and define the functionω : R2×2 → R by

ω(Z)= max
{
0,det(Z− Y )

}
.

It is easy to see thatω is polyconvex (for example, let

φ(A, δ)= δ+ detY − cofY :A, (3)
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note thatψ(A, δ)
def= max{0, φ(A, δ)} is convex, being the maximum of two convex functions, and thatω(Z) =

ψ(R(Z))). Fix X ∈ R2×2 such that det(X − Y ) > 0. For any positive real numberr let the set of 2× 2 matrices
K(r) be defined by

K(r)= B(0, r)∪B(X, r). (4)

By continuity of f (Z)
def= det(Z − Y ) there existsτ > 0 such thatω(Z) = 0 if Z ∈ B(0, τ ) andω(Z) = f (Z)

if Z ∈ B(X, τ), so that by takingε = 1
3 min{τ,dist(Y, {0,X})} we ensure thatω is smooth onK(2ε) and

dist(Y,K(2ε))� ε. Let η be a smooth cut-off function whose support lies inK(2ε) and which satisfies 0� η� 1,
with η(Z)= 1 if Z ∈K(ε). Define the functiong : R2×2 → R by

g(Z)= (
1− η(Z)

) |Z− Y |2
2

+ η(Z)ω(Z).

Observe that since|Z− Y |2/2 � ω(Z) for all Z we haveg(Z) � ω(Z) for all Z, and thatg is smooth with
|D2g(·)| � c for some fixed positive constantc. By the comments in the opening paragraph of [3, Section 4], [3,
Proposition 3.7] also applies to polyconvex envelopes; we can then conclude by [3, Remark 1, p. 347] that

W(Z)
def= gpc(Z)

is C1,1
loc . Using this and the following lemma we claimDW is in fact globally Lipschitz. By an abuse of notation

we let |ξ | = |ξ |2.

Lemma 2.1. ξ is a point of strict convexity ofg if |ξ | is sufficiently large.

Proof. Fix ξ such that dist(ξ,K(2ε)) > ε and letm= sup{|ω(A)− 1
2|A− Y |2|,A ∈K(2ε)}. By definition ofg it

follows that

g(Z)� 1

2
|Z− Y |2 −mη(Z) (5)

for all Z. We wish to showg(Z)− g(ξ) >Dg(ξ) : (Z− ξ) for all Z �= ξ , provided|ξ | is large enough; by (5) it is
sufficient to prove

1
2|Z− Y |2 −mη(Z)− 1

2|ξ − Y |2> ξ :Z+ ξ : Y − Y :Z− |ξ |2,
which is satisfied if and only if

1
2|ξ −Z|2 −mη(Z) > 0. (6)

Now for large enough|ξ |, inf{1
2|ξ −Z|2,Z ∈K(2ε)} � 2m, so that (6) holds for allZ �= ξ . ✷

We claim thatW(ξ)= g(ξ) for ξ such that Lemma 2.1 holds. By [3, Section 4, Eq. (4.1)],

W(ξ)= inf

{
6∑
i=1

λig(ξi), λi � 0,
6∑
i=1

λi = 1,
6∑
i=1

λiR(ξi)=R(ξ)

}
,

so we can apply Lemma 2.1 withZ = ξi to each summand in
∑6
i=1λig(ξi) to deduceW(ξ) � g(ξ). The reverse

inequality is true by definition of the polyconvex envelope so thatW(ξ) = g(ξ) for all large enoughξ . It now
follows easily that the derivative ofW is globally Lipschitz.

For future use we note that sinceω is polyconvex and boundsg below,g �W � ω on R2×2; and sinceg = ω

onK(ε) we haveW = ω onK(ε). The following lemmas are used in Theorem 2.4, where we show thatW has the
property stated in the title of this Note.

Lemma 2.2. Let ε > 0 and letξ be any fixed2 × 2 matrix. ThenR(ξ) lies in the interior of the convex hull of the
set{(U,detU), U ∈B(ξ, ε)}.
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Proof. Suppose not. Then there existC ∈ R2×2, c ∈ R not both zero, such that(C, c) ·R(ξ+τA)� (C, c) ·R(ξ) for
all A ∈ B(0, ε) and|τ | � 1, which holds if and only ifτ (A :C + cA : cofξ)+ cτ2 detA� 0. Dividing through by
τ2 �= 0 and lettingτ → 0+ it follows thatA : C+cA : cofξ � 0. Lettingτ → 0− we haveA :C+cA : cofξ = 0 for
allA ∈ B(0, ε), implying thatcdetA� 0 for suchA. Choose in particularA such that detA �= 0 and letĀ ∈ B(0, ε)
satisfy detĀ= −detA (for example, exchange the rows ofA and call the result̄A). ThencdetĀ� 0, cdetA� 0
together implyc= 0, from which it follows thatC :A= 0 for allA ∈B(0, ε). HenceC = 0, a contradiction. ✷
Lemma 2.3. Leth= h(A, δ) be convex,ξ ∈ R2×2 and suppose thath(A,detA)= 0 for |A− ξ | sufficiently small.
Thenh(A, δ)= 0 for |(A, δ)−R(ξ)| sufficiently small.

Proof. Supposeτ is such thath(R(A))= 0 if |A− ξ |2< τ . By Lemma 2.2, for sufficiently small|(C, δ)| we can
write (ξ + C,detξ + δ) and(ξ − C,detξ − δ) as convex combinations of points in{R(A), |A− ξ | < τ }, so by
applying convexity ofh it follows thath(ξ +C,detξ + δ)� 0 andh(ξ −C,detξ − δ)� 0. But 0= h(ξ,detξ)�
1
2(h(ξ + C,detξ + δ)+ h(ξ − C,detξ − δ)), so that both terms on the right hand side are zero, concluding the
proof. ✷
Theorem 2.4. No convex representative of W is differentiable atR(Y ).

Proof. Let ϕ be any convex representative ofW . We will show thatϕ must be differentiable at (in fact, smooth in
a neighbourhood of)R(0) andR(X) by applying Lemma 2.3 twice, from which it will follow that∂ϕ(R(Y )) is not
a singleton. Hence by the remarks in the introductionϕ cannot be differentiable atR(Y ).

SinceW = ω on K(ε) we knowϕ(R(A)) = 0 for A ∈ B(0, ε) andϕ(R(A)) = φ(R(A)) for A ∈ B(X,ε),
where the affine functionφ was defined in Eq. (3). Apply Lemma 2.3 toh = ϕ, ξ = 0 to conclude that
ϕ(A, δ) = 0 in a neighbourhood ofR(0). By convexity this impliesϕ � 0 everywhere. Hence, since we have
W(Y) = 0 it follows thatR(0) ∈ ∂ϕ(R(Y )). Next apply Lemma 2.3 toh(A, δ) = ϕ(A, δ) − φ(A, δ), ξ = X to
deduceϕ(A, δ)�W(Y)− cofY : (A− Y )+ δ − detY everywhere (again by convexity). In particular this gives
(−cofY,1) ∈ ∂ϕ(R(Y )). ✷
Remark 2.1. Sinceϕ is differentiable in a neighbourhood ofR(0) andR(X), the tangent hyperplanesT0 and
TX , say, to the graph ofϕ at (R(0),W(0)) and (R(X),W(X)) respectively are uniquely defined byDϕ(R(0))
and Dϕ(R(X)) respectively. Thus an alternative way of concluding the proof would be simply to check
(R(Y ),W(Y )) ∈ T0 ∩ TX .
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