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Abstract

LetM andM ′ be 3-manifolds andL a link inM ′. We prove that, under certain conditions, the degree of a branched covering
π :M → (M ′,L) is determined by the topological types ofM and(M ′,L). To cite this article: A.M. Salgueiro, C. R. Acad.
Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

SoientM et M ′ variétés tridimensionnelles etL un entrelacs dansM ′. On prouve que, sous certaines conditions, le
degré d’un revêtement ramifiéπ :M → (M ′,L) est déterminé par les types topologiques deM et (M ′,L). Pour citer cet
article : A.M. Salgueiro, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Version française abrégée

Une variété tridimensionnelle, compacte, orientable et irréductibleM estgéométrisables’il existe une famille
T (possiblement vide) de tores incompressibles tel queM − N(T) est une union disjointe de variétés qui sont soit
fibrés de Seifert soit hyperboliques. Lafamille JSJdeM est une telle famille minimale [3,4] et ladécomposition
JSJdeM est la décomposition correspondante à sa famille JSJ. On peut similairement définir la décomposition
JSJ d’un orbifold en considérant familles de 2-sous-orbifolds euclidiens orientables et incompressibles [2]. Quand
une variété (ou un orbifold) est géométrisable, songraphe JSJest défini comme le graph dual de la décomposition
JSJ, c’est-à-dire, les sommets sont en correspondance avec les morceaux de cette décomposition et les arêtes sont
en correspondance avec les tores de la famille JSJ.
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Les variétés géométrisablesM ′, excepté celles avec un revêtement du type (surface)× S1 ou un fibré en tores
surS1, ont la propriété(∗) de Thurston [6, Problème 3.16], c’est-à-dire, le degré d’un revêtement finif :M → M ′
est déterminé par le type topologique deM [11,12].

On étudie une question analogue pour des revêtements ramifiés le long d’un entrelacs, c’est-à-dire, une
sousvariété de dimension 1. Un entrelacsL dansM ′ est trivial s’il est connexe (i.e. s’il est un nœud) et que
sonextérieurE = M ′ − N(L) dansM ′ est soit un tore solide, soit un produitT 2 × I ; il estpremiersi toute sphère
deM ′ qui coupeL transversalement en deux points borde une boule qui intersecteL dans un arc non noué. Le
résultat principal de cette Note est :

Théorème 0.1.SoientM etM ′ des variétés tridimensionnelles compactes et orientables etL un entrelacs premier
et non trivial dansM ′. Si l’extérieur deL est irréductible et son graphe JSJ est un arbre alors il y a au plus un
nombre premierd > 3 (d � 3, siM ′ est irréductible) pour lequelM est un revêtement deM ′ de degréd ramifié le
long deL.

Comme corollaires, on obtient les résultats suivants concernant des entrelacs dans des sphères d’homologie
rationnelle ou entière.

Corollaire 0.2. SoitM ′ une sphère d’homologie rationnelle etL ⊂ M ′ un entrelacs premier, non trivial et dont
l’extérieur est irréductible. Alors deux revêtements ramifiés deM ′ le long deL ayant des degrés premiers> 3 (�3,
si M ′ est irréductible) et différents ne sont pas homéomorphes.

Dans la preuve de Théorème 0.1, on raisonne selon les différentes décompositions géométriques deE, en
distinguant trois cas, suivant queE contient un morceau hyperbolique, est une variété de Seifert ou est une variété
graphée non triviale. Dans le cas oùE est une variété de Seifert on donne des exemples (voir Exemples 1 et 2) où
le degré n’est pas déterminé, quand il n’est pas premier. Par contre, quandE contient un morceau hyperbolique,
on exige seulement queπ :M → (M ′,L) soit un revêtement ramifiéfortement cyclique, c’est-à-dire, le groupe
des transformations de revêtement est cyclique et l’ordre de ramification est égal au degré deπ le long de toute
composante deL. On remarque que quandπ a un degré premier, il est toujours fortement cyclique.

1. Geometric decompositions

A compact orientable irreducible 3-manifoldM is geometrisableif there is a (possibly empty) familyT
of incompressible tori such thatM − N(T) is a disjoint union of manifolds which are either Seifert fibred
or hyperbolic. TheJSJ familyof M is a minimal such family [3,4] and theJSJ decompositionof M is
the decomposition corresponding to its JSJ family. We can similarly define JSJ decompositions of orbifolds
by considering families of incompressible Euclidian 2-suborbifolds [2]. When a manifold (or an orbifold) is
geometrisable, itsJSJ graphis defined as the dual graph of the JSJ decomposition, that is, the vertices are in
correspondence with the pieces of this decomposition and the edges are in correspondence with the tori of the JSJ
family.

It was recently proved [11,12] that all geometrisable manifoldsM ′, except those which are covered by a
(surface)× S1 or a torus bundle overS1, have the property(∗) of Thurston [6, Problem 3.16], that is, the degree of
a finite coveringπ :M → M ′ is determined by the topological type ofM.

We study an analogous question about branched coverings of a link, that is, a 1-dimensional submanifold. A link
L in M ′ is trivial if it is connected (i.e., if it is a knot) and itsexteriorE = M ′ − N(L) in M ′ is either a solid torus
or a productT 2 × I ; it is prime if every sphere ofM ′ that cutsL transversely in two points bounds a ball that
intersectsL in an unknotted arc. The main result of this Note is:
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Theorem 1.1.Let M andM ′ be compact orientable3-manifolds andL be a nontrivial prime link inM ′. If the
exterior ofL is irreducible and its JSJ graph is a tree then there is at most one prime numberd > 3 (d � 3, if M ′
is irreducible) for whichM is ad-fold covering ofM ′ branched alongL.

As corollaries we obtain the following results concerning links in rational or integer homology spheres.

Corollary 1.2. Let M ′ be a rational homology sphere andL ⊂ M ′ be a nontrivial prime link with irreducible
exterior. Then any two branched coverings of(M ′,L) with different prime degrees> 3 (�3, if M ′ is irreducible)
are nonhomeomorphic.

We remark that, since a branched coveringπ :M → (M ′,L) restricts to a coveringπ : ∂M → ∂M ′, we need
only to consider the case where∂M is an union of tori. By the equivariant sphere theorem [7], the hypothesis
concerning the linkL and the exteriorE imply thatM is irreducible. Then Thurston’s orbifold theorem [1] asserts
that the quotient orbifoldOd = M/Zd is geometrisable. Moreover, the classification ofZd -actions onT 2×I shows
that, the JSJ family ofOd lifts to the JSJ family ofM. SinceE is a manifold with boundary it is geometrisable [5,8].

In the proof of Theorem 1.1 we will argue on the different geometric decompositions ofE, distinguishing three
cases, according to whetherE contains a hyperbolic piece, is a Seifert manifold or is a nontrivial graph manifold.
In the case whereE is a Seifert manifold we give examples (see Examples 1 and 2) where the degree is not
determined, when it is not prime. On the other hand, whenE contains a hyperbolic piece, we only require that
π :M → (M ′,L) be astrongly cyclicbranched covering, that is, the group of covering transformations is cyclic
and the ramification order equals the degree ofπ along all components ofL. Notice that whenπ has prime degree,
it is always strongly cyclic.

2. E contains a hyperbolic piece

Proposition 2.1.If E contains a hyperbolic piece, then there is at most one numberd > 3 (�3, if M ′ is irreducible)
for whichM is a strongly cyclic branched covering ofM ′ overL with degreed .

Proof. Sinced > 3, the JSJ family ofOd contains only tori and thus coincides with the JSJ family ofE (if M ′
is irreducible, this happens ford � 3, since in this case there are no spheres that cutL transversely in exactly
3 points). Moreover, the proof of Thurston’s orbifold theorem shows thatOd must also have some hyperbolic
piece [1]. The hyperbolic pieces ofOd lift to the hyperbolic pieces ofM and
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touchesL as a hyperbolic cone-manifold with cone angles 2π/d . Again by [1], when we increase the cone
angles from zero, no degeneration occurs, and the Schläfli formula shows that the hyperbolic volume ofO

j

d either
decreases strictly or remains constant according to whether it contains a component ofL or not. Then the left-hand
member of (1) is a non-decreasing function ofd . Since the right-hand member is a decreasing function ofd , this
shows that (1) can be verified by at most one value ofd . ✷

3. E is a Seifert fibred space

Proposition 3.1. If E is a Seifert fibred space then there is at most one prime numberd � 1 for whichM is a
branched covering ofM ′ overL with degreed .
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A Seifert fibrationof (M ′,L) is a Seifert fibration ofM ′ such thatL is an union of fibres. SinceL is a prime
link, a Seifert fibration ofE extends to a Seifert fibration of(M ′,L). By lifting this fibration toM we obtain a
Seifert fibration preserved by the covering transformations. Thereforeπ :M → M ′ induces an orbifold covering
ϕ :BM → BOd , whereBX is the base orbifold of the Seifert fibration ofX. Let u be the degree of this covering
andv the degree of the restriction ofπ to a general regular fibre ofM. In these conditions we say that the covering
hastype(u, v) and we haved = uv. Sinced is prime, we have only to consider two types of coverings, namely
(u, v) = (1, d) and(u, v) = (d,1).

Denote the fibration ofM by (g,n|e0;β1/α1, . . . , βm/αm), wheren is the number of boundary components
of the underlying surfaceF of BM, g is the genus of the closed surface obtained by gluing discs to those
components (we considerg < 0 for non-orientable surfaces),e0 ∈ Q is the Euler number of the Seifert fibration,
andβi/αi ∈ Q/Z are the Seifert invariants of the fibres ofM. If n = 0 we omit it from the notation; ifn = 0, then
e0 = 0. The orbifoldBM will be represented byF(α1, . . . , αm).

Consider a fibred torusT in M and its imageT ′ in M ′. Letβ/α andβ ′/α′ be the Seifert invariants of the central
fibres ofT andT ′. A generalisation of a calculus of Seifert [9] shows thatβ ′/α′ ≡ (v/uT )(β/α)(mod 1), whereuT

is the degree ofϕ|BT . This relation shows that whend is not prime uniqueness may fail, even when the manifolds
are closed and the Euler numbers of their Seifert fibrations are nonzero (note that the branched coverings in the
following examples are not strongly cyclic).

Example 1. Let M ∼= (0|0;1/3,1/3,1/3) and (M ′,L) ∼= (S2 × S1, {x, y, z} × S1). ThenM is a (1,3n)-cyclic
branched cover ofM ′ overL, for everyn ∈ N.

Example 2.Consider the manifoldsM ∼= (0| − 4/3;1/3,1/3,1/3,1/3) andM ′ ∼= L4,1 and the linkL made of
three fibres of the fibration(0| − 4;−) of M ′. ThenM is a (2,6)- and a(4,12)-cyclic branched cover ofM ′
overL.

When the Euler number of the Seifert fibration ofM is nonzero and the degree is supposed to be prime, its
uniqueness is immediate, sincee0(M

′)/e0(M) = v/u = d±1. If we do not assume that the degree is prime, we can
show, by reasoning with the Seifert invariants, that uniqueness still holds for strongly cyclic branched coverings.

For the general case, we restrict ourselves to prime degrees and we consider the Euler characteristics of the
bases. First observe thatχ(BM) = uχ(BOd ). The orbifoldBOd can be obtained fromBM ′ by multiplying byd
the multiplicities of certain points (given by the components ofL). If the multiplicities of these points ofBM ′ are
a1, a2, . . . , an, then, by settingr = ∑n

i=1 1/ai , the Euler characteristic of the base ofOd is given by

χ(BOd) = χ(BM ′)− r + r/d. (2)

The manifoldM has an unique Seifert fibration except when it is a lens space, a prism space, a solid torus, a
twistedI -bundle over the Klein bottle or its double [10]. These last two manifolds have however only two Seifert
fibrations, which have bases of equal (null) Euler characteristic. On the other hand,(M ′,L) has an unique Seifert
fibration except when it is a lens space andL is composed by one or both axis ofM ′, a prism space withL a fibre
such thatE is the twistedI -bundle over the Klein bottle, or a solid torus withL composed only by the axis ofM ′.

Claim. If (M ′,L) is one of exceptional cases above, then M is either a lens space, a prism space or a solid torus.

Proposition 3.2.Proposition3.1 is true whenM is not a lens space, a solid torus or a prism space.

Proof. By the claim,(M ′,L) admits an unique fibration andχ(BM) andχ(BM ′) are well defined. Then from (2)
we obtainχ(BM) = u(χ(BM ′)−r+r/d) which shows that givenu there is at most one possible value ford . Since
u = 1 or d there are at most two solutions (ifχ(BM) = 0 there is only one), each corresponding to one type of
covering. We denote these two solutions byd1 andd2, according tou = 1 oru = d . Suppose that there is a(1, d1)-
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and a(d2,1)-covering. Since the orbifoldsBM andBOd1 coincide, they have the same topological type. On the

other hand, there is a coveringBM
d2→BOd2, where the number over the arrow stands for the degree of the covering.

This covering induces a cyclic branched covering|BM| d2→|BM|. The only surfaces that have a cyclic branched
covering over itself are the sphere (with two branch points), the projective plane and the disc (both with one

branch point). SinceBM andBOd1 have the same number of singular points, the possibilities forBM
d2→BOd2 are

S2(a, a, b, b)
2→S2(a, b,2,2), S2(a, a, a)

3→S2(a,3,3), S2(a, b, b)
2→S2(2a, b,2) and D(a,a)

2→D(a,2). We
conclude the proof by getting a contradiction in each case, by using Seifert invariants.✷

WhenM is a solid torus andπ :M → (M ′,L) is a branched covering,M ′ is also a solid torus andL is the axis
of M ′. ThenL is a trivial link and in factπ can have any degree. WhenM is a lens space or a prism space, thenM ′
is also a lens space or a prism space, and Proposition 3.1 is proved for these remaining cases by an analysis of the
Seifert invariants of the different fibrations ofM and(M ′,L). Note that whenL is an axis of a lens spaceLa,b′ , it
is a trivial link, and in factLa,b is a branched covering of degreed over(La,b′,L), whendb′ ≡ b(moda).

4. E is a nontrivial graph manifold

Proposition 4.1.If E is a nontrivial graph manifold whose JSJ graph is a tree, then there is at most one prime
numberd � 1 for whichM is a branched covering ofM ′ overL with degreed .

We explain the proof whend � 3. SinceL is a prime link,Od must be a nontrivial graph orbifold with the same
JSJ graph asE. The manifoldM is also a nontrivial graph manifold. Consider the JSJ graphsΓ andΓ ′ of M and
Od , respectively. Suppose that there are two branched coveringsπp andπq with degreesp andq from M to M ′,
corresponding to the actionsfp andfq . Whend � 3, they induce mapsΓ → Γ ′ that we will also denote byπi .
The proof thatp = q is combinatorial, and it uses the following lemma, which is proven by induction over the
distances tov.

Lemma 4.2.If a vertexv of Γ is p-fixed, thend(v,w) = d(πp(v),πp(w)), for every vertexw of Γ .

A vertexv of Γ is p-fixed if π−1
p (πp(v)) = {v}. We call the vertices of valence 1terminaland the remaining

onesinterior. Denote byI[T] the subgraph determined by the interior [terminal] vertices ofΓ and the edges joining
them (I is always connected andT = Γ − I is totally disconnected except whenΓ = K2). The notations for the
vertices ofΓ ′ are analogous to those for the vertices ofΓ .

Proposition 4.3.Proposition4.1 is true whenΓ is a tree.

Proof. Clearlyπp(T) ⊆ T′ andπq(T) ⊆ T′. If π−1
p (T′) andπ−1

q (T′) are both contained inT, we may restrict the
original coverings to coveringsπi : M0 → M ′

0, whereM0 andM ′
0 are the submanifolds ofM andM ′ determined

by I andI′. By induction, we have the uniqueness ofp (the initial cases forI′ are easily proved).
Suppose now that there is a vertexv′ of T′ such thatvp = π−1

p (v′) ∈ I. SinceΓ has no cycles,π−1
p (v′) has

only one vertex fromI and the onlyp-fixed vertex fromΓ is vp . Therefore, the only vertex ofΓ ′ that contains
components ofL is v′ andΓ − vp is composed byp copies ofΓ ′ − v′. Denote byl the maximal distance fromv′
to the remaining vertices ofΓ ′. By Lemma 4.2, the distances tovp andvq = π−1

q (v′) are preserved byπp andπq ,
respectively. Ifvq = vp , there would exist vertices fromΓ at a distance fromvq greater thanl, namely the vertices
at a distancel from vp , but in a component ofΓ − vp that does not containvq , which is absurd. Thusvq = vp
which by Proposition 3.1 completes the proof.✷
Lemma 4.4.If Γ is not a tree and it has a vertexv which is fixed for both actions, thenp = q .
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Proposition 4.5.Proposition4.1 is true whenΓ is not a tree.

Proof. Let c be a minimal cycle inΓ . This cycle projects underπp to a subtree ofΓ ′, therefore there must be a
vertexv1 of c such that the two verticesx andy of c adjacent tov1 have the same image (if there was an edge of
c connecting two vertices with the same image, this edge would project to a cycle). Ifv1 were notp-fixed, then
πp(xv1) andπp(v1y) are two different edges connectingπp(v1) andπp(x). Therefore they define a cycle inΓ ′
(absurd). This shows thatv1 is p-fixed.

Sincec is minimal,c has exactly one morep-fixed vertexv2 andc is the union of two of thep minimal paths
connectingv1 to v2. By the same reasoning applied to the covering of degreeq we conclude that there are exactly
two q-fixed verticesw1 andw2 in c and thatc is the union of two of theq minimal paths fromw1 to w2. By
Lemma 4.4, we can suppose thatv1 andv2 are notq-fixed and thatw1 andw2 are notp-fixed.

Suppose thatπq(v1) = πq(v2) and consider a minimal path connectingv1 andv2, not contained inc. Sincev1
is notq-fixed, there is one vertexx = v1 in this path such thatπq(x) = πq(v1). Suppose without loss of generality
thatv1 is closer tow1 than tow2. Then length(v1xw1v1) < length(v1xv2) + length(v2w1v1) = 2 length(v1v2) =
length(c), which contradicts minimality ofc. This shows thatπq(v1) = πq(v2). Similarly πp(w1) = πp(w2). We
can thus setπ−1

q (πq(v1)) = {vi}i=1,...,q andπ−1
p (πp(w1)) = {wj }j=1,...,p .

Let C = ⋃
l,k f

l
q(f

k
p (c)). For allx in C consider the unionΓx of all components ofΓ − x that do not contain

C − x. Suppose without loss of generality thatx is notp-fixed. Thenfp(Γx) = Γfp(x), sinceC is invariant under
〈fp〉. ThenΓx is a (possibly disconnected and possibly empty) tree, becauseΓ ′ is a tree.

Suppose that there are paths ofΓ , not contained inC, connecting two verticesx andy of C, and consider a
minimal one. Then, sinceΓ ′ has no cycles, we haveπp(x) = πp(y) andπq(x) = πq(y), which contradicts the
construction. Therefore every vertex ofΓ − C is in someΓx .

Now remove all terminal vertices fromΓ ′ and iterate this process. Then, for everyx ∈ Γ , πp(Γx) andπq(Γx)

are exhausted at the same time, since the distances of the vertices ofΓx to x are preserved byπp andπq . This
shows that the last vertex to be removed isπp(wi) = πq(vj ). Since the valence of this vertex at the last step is both
p andq (which can be seen by considering both projectionsΓ → Γ ′), this concludes the proof thatp = q . ✷
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