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Abstract

Let M andM’ be 3-manifolds and. a link in M’. We prove that, under certain conditions, the degree of a branched covering
7:M — (M’, L) is determined by the topological types &f and (M’, L). To cite this article: A.M. Salgueiro, C. R. Acad.
Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Soient M et M’ variétés tridimensionnelles dt un entrelacs dang/’. On prouve que, sous certaines conditions, le
degré d’'un revétement ramifié: M — (M’, L) est déterminé par les types topologiquesMieet (M’, L). Pour citer cet
article: A.M. Salgueiro, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Version francaise abrégée

Une variété tridimensionnelle, compacte, orientable et irréduckiblestgéométrisables’il existe une famille
T (possiblement vide) de tores incompressibles tel Mue N(T) est une union disjointe de variétés qui sont soit
fibrés de Seifert soit hyperboliques. famille JSJde M est une telle famille minimale [3,4] et Bécomposition
JSJde M est la décomposition correspondante a sa famille JSJ. On peut similairement définir la décomposition
JSJ d’'un orbifold en considérant familles de 2-sous-orbifolds euclidiens orientables et incompressibles [2]. Quand
une variété (ou un orbifold) est géométrisable, gmphe JSEst défini comme le graph dual de la décomposition
JSJ, c’est-a-dire, les sommets sont en correspondance avec les morceaux de cette décomposition et les arétes s
en correspondance avec les tores de la famille JSJ.
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Les variétés géométrisabl@s , excepté celles avec un revétement du type (surfac ou un fibré en tores
surS?, ont la propriété&x) de Thurston [6, Probléme 3.16], c’est-a-dire, le degré d’un revétement fii — M’
est déterminé par le type topologiquede[11,12].

On étudie une question analogue pour des revétements ramifiés le long d'un entrelacs, c’est-a-dire, une
sousvariété de dimension 1. Un entreldcslansM’ est trivial s'il est connexe (i.e. s'il est un nceud) et que
sonextérieurE = M’ — N(L) dansM’ est soit un tore solide, soit un prodiit x I ; il estpremiersi toute sphére
de M’ qui coupeL transversalement en deux points borde une boule qui intersedéss un arc non noué. Le
résultat principal de cette Note est :

Théoréme 0.1SoientM et M’ des variétés tridimensionnelles compactes et orientablessetentrelacs premier

et non trivial dansM’. Si I'extérieur deL est irréductible et son graphe JSJ est un arbre alors il y a au plus un
nombre premietl > 3 (d > 3, si M’ est irréductiblé pour lequelM est un revétement de’ de degrél ramifié le
long deL.

Comme corollaires, on obtient les résultats suivants concernant des entrelacs dans des spheres d’homolog
rationnelle ou entiere.

Corollaire 0.2. Soit M’ une sphére d’homologie rationnelle Etc M’ un entrelacs premier, non trivial et dont
I'extérieur est irréductible. Alors deux revétements ramifiédfde long deL ayant des degrés premiess3 (>3,
si M’ est irréductiblg et différents ne sont pas homéomorphes.

Dans la preuve de Théoréme 0.1, on raisonne selon les différentes décompositions géométrijuen de
distinguant trois cas, suivant quecontient un morceau hyperbolique, est une variété de Seifert ou est une variété
graphée non triviale. Dans le cas fitest une variété de Seifert on donne des exemples (voir Exemples 1 et 2) ou
le degré n’est pas déterminé, quand il n'est pas premier. Par contre, fuaomtient un morceau hyperbolique,
on exige seulement que: M — (M’, L) soit un revétement ramifidortement cycliquec’est-a-dire, le groupe
des transformations de revétement est cyclique et I'ordre de ramification est égal au dedeéldeg de toute
composante dé. On remarque que quamda un degré premier, il est toujours fortement cyclique.

1. Geometric decompositions

A compact orientable irreducible 3-manifold is geometrisabldf there is a (possibly empty) family
of incompressible tori such tha¥ — N(7) is a disjoint union of manifolds which are either Seifert fibred
or hyperbolic. TheJSJ familyof M is a minimal such family [3,4] and thdSJ decompositioof M is
the decomposition corresponding to its JSJ family. We can similarly define JSJ decompositions of orbifolds
by considering families of incompressible Euclidian 2-suborbifolds [2]. When a manifold (or an orbifold) is
geometrisable, itdSJ graphis defined as the dual graph of the JSJ decomposition, that is, the vertices are in
correspondence with the pieces of this decomposition and the edges are in correspondence with the tori of the JS
family.

It was recently proved [11,12] that all geometrisable manifalfs except those which are covered by a
(surface)x ST or a torus bundle oves!, have the property) of Thurston [6, Problem 3.16], that is, the degree of
a finite coveringr : M — M’ is determined by the topological type &f.

We study an analogous question about branched coverings of a link, that is, a 1-dimensional submanifold. A link
L in M’ istrivial if it is connected (i.e., if itis a knot) and iexterior E = M’ — N(L) in M’ is either a solid torus
or a productl'? x I; it is primeif every sphere of\f’ that cutsL transversely in two points bounds a ball that
intersectd. in an unknotted arc. The main result of this Note is:
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Theorem 1.1.Let M and M’ be compact orientabl8-manifolds andL be a nontrivial prime link inM’. If the
exterior of L is irreducible and its JSJ graph is a tree then there is at most one prime nuimb& (d > 3, if M’
is irreducible) for which M is ad-fold covering ofM’ branched alond..

As corollaries we obtain the following results concerning links in rational or integer homology spheres.

Corollary 1.2. Let M’ be a rational homology sphere arldc M’ be a nontrivial prime link with irreducible
exterior. Then any two branched coveringsdf’, L) with different prime degrees 3 (>3, if M’ is irreducible)
are nonhomeomorphic.

We remark that, since a branched covering\f — (M’, L) restricts to a covering : dM — dM’, we need
only to consider the case whedd/ is an union of tori. By the equivariant sphere theorem [7], the hypothesis
concerning the link. and the exterioE imply thatM is irreducible. Then Thurston’s orbifold theorem [1] asserts
that the quotient orbifold, = M/Z, is geometrisable. Moreover, the classificatiofZgfactions ori'® x I shows
that, the JSJ family a, lifts to the JSJ family oM. SinceF is a manifold with boundary it is geometrisable [5,8].

In the proof of Theorem 1.1 we will argue on the different geometric decompositiafisditinguishing three
cases, according to whethErcontains a hyperbolic piece, is a Seifert manifold or is a nontrivial graph manifold.
In the case wherd is a Seifert manifold we give examples (see Examples 1 and 2) where the degree is not
determined, when it is not prime. On the other hand, wBecontains a hyperbolic piece, we only require that
7:M — (M’, L) be astrongly cyclicbranched covering, that is, the group of covering transformations is cyclic
and the ramification order equals the degres afong all components df. Notice that whemr has prime degree,
it is always strongly cyclic.

2. E contains a hyperbolic piece

Proposition 2.1.1f E contains a hyperbolic piece, then there is at most one nuahbeB (>3, if M’ is irreducible)
for which M is a strongly cyclic branched covering 8f’ over L with degreed.

Proof. Sinced > 3, the JSJ family ofd,; contains only tori and thus coincides with the JSJ familyEofif M’

is irreducible, this happens fat > 3, since in this case there are no spheres thafcuansversely in exactly
3 points). Moreover, the proof of Thurston’s orbifold theorem shows ¢hatnust also have some hyperbolic
piece [1]. The hyperbolic pieces 6f; lift to the hyperbolic pieces o#f and

0< vol(0)) = w < 00, (1)
J

where®’ and M’ are the hyperbolic pieces of the decomposition®)gfand M. We may regard eacti’; that
touchesL as a hyperbolic cone-manifold with cone angles/2. Again by [1], when we increase the cone
angles from zero, no degeneration occurs, and the Schlafli formula shows that the hyperbolic vallneitioér
decreases strictly or remains constant according to whether it contains a compahentwit. Then the left-hand
member of (1) is a non-decreasing functiordofSince the right-hand member is a decreasing functiaf tifis
shows that (1) can be verified by at most one valué.of O

3. E is a Seifert fibred space

Proposition 3.1.1f E is a Seifert fibred space then there is at most one prime numbef for which M is a
branched covering aff’ over L with degreed.
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A Seifert fibrationof (M’, L) is a Seifert fibration of¥f’ such thatL is an union of fibres. Sincg is a prime
link, a Seifert fibration ofE extends to a Seifert fibration @', L). By lifting this fibration toM we obtain a
Seifert fibration preserved by the covering transformations. Therefold — M’ induces an orbifold covering
¢.BM — BOy4, whereBX is the base orbifold of the Seifert fibration &f Letu be the degree of this covering
andv the degree of the restriction afto a general regular fibre @f . In these conditions we say that the covering
hastype (1, v) and we havel = uv. Sinced is prime, we have only to consider two types of coverings, namely
(u,v) =1, d)and(u,v) =, 1).

Denote the fibration oM by (g, n|eo; B1/a1, - .., Bm/om), Wheren is the number of boundary components
of the underlying surface& of BM, g is the genus of the closed surface obtained by gluing discs to those
components (we considgr< 0 for non-orientable surfaces) € Q is the Euler number of the Seifert fibration,
andg;/a; € Q/Z are the Seifert invariants of the fibresMf. If » = 0 we omit it from the notation; iz # 0, then
eo = 0. The orbifoldB M will be represented by (a1, .. ., an).

Consider a fibred torug in M and its imagd™’ in M’. Let 8/« andB’/a’ be the Seifert invariants of the central
fibres of T andT’. A generalisation of a calculus of Seifert [9] shows thaty’ = (v/ur)(B/a)(mod 1), whereur
is the degree ofsr. This relation shows that whehis not prime uniqueness may fail, even when the manifolds
are closed and the Euler numbers of their Seifert fibrations are nonzero (note that the branched coverings in the
following examples are not strongly cyclic).

Example 1.Let M = (0|0; 1/3,1/3,1/3) and (M, L) = (S? x S, {x, y,z} x S1). ThenM is a (1, 3n)-cyclic
branched cover o#f’ overL, for everyn € N.

Example 2. Consider the manifolda7 = (0] — 4/3;1/3,1/3,1/3,1/3) and M’ = L4 1 and the linkL made of
three fibres of the fibratiof0| — 4; —) of M’. ThenM is a (2, 6)- and a(4, 12)-cyclic branched cover oM’
overL.

When the Euler number of the Seifert fibration Mf is nonzero and the degree is supposed to be prime, its
uniqueness is immediate, sinagM’) /eo(M) = v/u = d**. If we do not assume that the degree is prime, we can
show, by reasoning with the Seifert invariants, that uniqueness still holds for strongly cyclic branched coverings.

For the general case, we restrict ourselves to prime degrees and we consider the Euler characteristics of th
bases. First observe thatBM) = ux (BO4). The orbifoldBO, can be obtained fror® M’ by multiplying by d
the multiplicities of certain points (given by the component£ pflf the multiplicities of these points dBM’ are
ai,ay, ..., ay, then, by setting =Y "7_; 1/a;, the Euler characteristic of the base®f is given by

X (BOg) = x(BM') —r +r/d. (2

The manifoldM has an unique Seifert fibration except when it is a lens space, a prism space, a solid torus, a
twisted 7-bundle over the Klein bottle or its double [10]. These last two manifolds have however only two Seifert
fibrations, which have bases of equal (null) Euler characteristic. On the other({@4hd,) has an unique Seifert
fibration except when it is a lens space dnis composed by one or both axis &, a prism space witli, a fibre
such thatE is the twistedl -bundle over the Klein bottle, or a solid torus withcomposed only by the axis af’.

Claim. If (M’, L) is one of exceptional cases above, then M is either a lens space, a prism space or a solid torus.
Proposition 3.2.Proposition3.1is true whenM is not a lens space, a solid torus or a prism space.

Proof. By the claim,(M’, L) admits an unique fibration andBM) andy (BM’) are well defined. Then from (2)

we obtainy (BM) = u(x (BM’) —r +r/d) which shows that given there is at most one possible valuedoSince

u =1 ord there are at most two solutions §f(BM) = 0 there is only one), each corresponding to one type of
covering. We denote these two solutionsdiyandds, according tar = 1 oru = d. Suppose that there is(&, d1)-
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and a(d», 1)-covering. Since the orbifold8M and B0, coincide, they have the same topological type. On the
other hand, there is a coveritigy/ % B0Og4,, where the number over the arrow stands for the degree of the covering.

This covering induces a cyclic branched coverifig/ | L |BM|. The only surfaces that have a cyclic branched
covering over itself are the sphere (with two branch points), the projective plane and the disc (both with one

branch point). Sinc®M andB0,, have the same number of singular points, the possibilitie%Mri% BOg4, are

S?(a,a,b,b) 3 S%(a, b, 2,2), S(a.a,a)~> S%(a,3,3), S2(a, b, b)> S%(2a,b,2) and D(a,a) > D(a,2). We
conclude the proof by getting a contradiction in each case, by using Seifert invariants.

WhenM is a solid torus ané : M — (M’, L) is a branched covering{’ is also a solid torus and is the axis
of M'. ThenL is a trivial link and in factr can have any degree. Whahis a lens space or a prism space, tin
is also a lens space or a prism space, and Proposition 3.1 is proved for these remaining cases by an analysis of tf
Seifert invariants of the different fibrations of and(M’, L). Note that wherL is an axis of a lens spadg, , it
is a trivial link, and in fact, j is a branched covering of degré@ver (L, /, L), whendb’ = b(moda).

4. E is a nontrivial graph manifold

Proposition 4.1.1f E is a nontrivial graph manifold whose JSJ graph is a tree, then there is at most one prime
numberd > 1 for which M is a branched covering a¥f’ over L with degreei.

We explain the proof whed > 3. SinceL is a prime link,04 must be a nontrivial graph orbifold with the same
JSJ graph a&'. The manifoldM is also a nontrivial graph manifold. Consider the JSJ grdplasnd "’ of M and
04, respectively. Suppose that there are two branched coveringsdr, with degreegp andg from M to M,
corresponding to the actions, and f,. Whend > 3, they induce map$§' — I'’ that we will also denote by;.
The proof thatp = ¢ is combinatorial, and it uses the following lemma, which is proven by induction over the
distances ta.

Lemma 4.2.1f a vertexv of I" is p-fixed, thend (v, w) = d(,(v), 7w, (w)), for every vertexw of I

A vertexv of I' is p-fixedif n;l(np(v)) = {v}. We call the vertices of valencet&rminaland the remaining
onesinterior. Denote byJ[T] the subgraph determined by the interior [terminal] verticeE aind the edges joining
them ( is always connected arli= I" — J is totally disconnected except whéh= K>). The notations for the
vertices ofl"’ are analogous to those for the verticedof

Proposition 4.3.Proposition4.1is true whenl" is a tree.

Proof. Clearlyz,(T) € 7" andn, (T) € 7. If nl,‘l(ﬂ”) and;rq‘l(‘I’) are both contained ifi, we may restrict the
original coverings to coverings; : Mo — Mg, whereMo and M, are the submanifolds a7 and M’ determined
by J andJ’. By induction, we have the uniquenesspofthe initial cases fof’ are easily proved).

Suppose now that there is a vertgxof 7' such that, = nl,‘l(v’) € J. SincerI” has no cycleszr[jl(v’) has
only one vertex frony and the onlyp-fixed vertex fromI” is v,. Therefore, the only vertex af” that contains
components ol isv" andI” — v, is composed by copies ofI”” — v'. Denote byl the maximal distance fron(
to the remaining vertices df’. By Lemma 4.2, the distancestg andv, = nq‘l(v’) are preserved by, andr,,
respectively. Ifu, # v,,, there would exist vertices froli at a distance froma, greater tham, namely the vertices
at a distance from v, but in a component of” — v, that does not contain,, which is absurd. Thus, = v,
which by Proposition 3.1 completes the proofa

Lemma 4.4.1f I" is not a tree and it has a vertaxwhich is fixed for both actions, thgn=gq.
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Proposition 4.5.Proposition4.1is true whenl" is not a tree.

Proof. Letc be a minimal cycle in"". This cycle projects under, to a subtree of ’, therefore there must be a
vertexvi of ¢ such that the two verticesandy of ¢ adjacent ta; have the same image (if there was an edge of
¢ connecting two vertices with the same image, this edge would project to a cycle)wkre notp-fixed, then
7,(xv1) andm,(v1y) are two different edges connecting (v1) andn,(x). Therefore they define a cycle i/
(absurd). This shows that is p-fixed.

Sincec is minimal, ¢ has exactly one morpg-fixed vertexv, andc is the union of two of they minimal paths
connectingys to vy. By the same reasoning applied to the covering of degnee conclude that there are exactly
two ¢g-fixed verticesws andws in ¢ and thatc is the union of two of the; minimal paths fromw; to wz. By
Lemma 4.4, we can suppose thatandv; are notg-fixed and thatv; andw, are notp-fixed.

Suppose that, (v1) # 7, (v2) and consider a minimal path connectimgandv,, not contained ire. Sincevy
is notg-fixed, there is one vertex# v; in this path such that, (x) = 7, (v1). Suppose without loss of generality
thatvq is closer tows than tow,. Then lengtiivixwiv1) < lengthivixvz) + lengthlvowiv1) = 2lengthvivy) =
length(c), which contradicts minimality of. This shows thatr, (v1) = 7, (v2). Similarly 7, (w1) = 7, (w2). We

LetC = U,,k fql(fl’;(c)). For allx in C consider the unio’, of all components of” — x that do not contain
C — x. Suppose without loss of generality thats not p-fixed. Thenf),(I'y) = I',(x), sinceC is invariant under
(fp)- Thenr is a (possibly disconnected and possibly empty) tree, bedatisea tree.

Suppose that there are paths/of not contained irC, connecting two vertices andy of C, and consider a
minimal one. Then, sincé” has no cycles, we have,(x) = ,(y) andmr,(x) = 4 (y), which contradicts the
construction. Therefore every vertexBf— C is in somerly.

Now remove all terminal vertices from’ and iterate this process. Then, for every I", 7, (I'y) andmr, (I)
are exhausted at the same time, since the distances of the vertifgdmf are preserved by, andn,. This
shows that the last vertex to be removed j§w;) =, (v;). Since the valence of this vertex at the last step is both
p andg (which can be seen by considering both projectibns- I'’), this concludes the proof that=¢g. O
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