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Abstract We prove that the 12-dimensional complete quaternion-Kähler manifolds with positive
scalar curvature belong to the list of symmetric spaces given by Wolf [12]. To cite this
article: H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 43–46. 2002
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Classification de variétés Kähleriennes quaternioniques positives de
dimension 12

Résumé Dans cette Note, nous démontrons que les variétés complètes Kähleriennes quaternioniques
de courbure scalaire positive et de dimension 12 appartiennent à la liste d’espaces
symétriques donnée par Wolf [12]. Pour citer cet article : H. Herrera, R. Herrera, C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 43–46. 2002 Académie des sciences/Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

ConsiderR4n ∼= Hn as a right module over the quaternionsH whose elements are column vectors with
entries inH. Let Sp(n) be the group of matrices whose entries are quaternions such thatAA∗ = I , the
identity matrix. LetA ∈ Sp(n), q ∈ Sp(1) act onX ∈ Hn by AXq−1, so that Sp(n)Sp(1) = (Sp(n) ×
Sp(1))/{±1} ⊂ SO(4n) ⊂ GL(4n,R).

DEFINITION 1.1. – An oriented connected irreducible Riemannian 4n-manifoldM is called aquater-
nion-Kähler manifold, n � 2, if its linear holonomy is contained in Sp(n)Sp(1). We shall callM positiveif
its metric is complete and has positive scalar curvature. Whenn = 1 we add the condition that the manifold
M must be Einstein and self-dual, since Sp(1)Sp(1) = SO(4).

Wolf showed in [12] that each compact centerless Lie groupG is the isometry group of a positive
quaternion-Kähler symmetric space given as the conjugacy class of a copy of Sp(1) in G, determined by a
highest root ofG. They are called “Wolf spaces” and are the only known examples with complete metrics of
positive scalar curvature. Moreover, it is known that there are only finitely many positive quaternion-Kähler
manifolds for eachn [7]. These facts have given hope to the following conjecture.
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CONJECTURE 1.1. – Every positive quaternionic Kähler manifold is isometric to a(symmetric) Wolf
space.

Hitchin proved it in 4 dimensions [6], and Poon and Salamon proved it in 8 dimensions [10]. We are able
to produce a proof of the conjecture in 12 dimensions (see[4] for the full details). Our main result states
that a positive quaternion-Kähler 12-manifold must be a Wolf space.

THEOREM 1.1. – A positive12-dimensional quaternion-Kähler manifold is isometric to one of the
following symmetric spaces:
(1) The quaternionic projective spaceHP3.
(2) The complex GrassmannianGr2(C

5).
(3) The real GrassmannianGr4(R

7).

For instance, Poon and Salamon carried out a careful study of the standard twistor spaceZ of M as a
polarized algebraic variety and were able to pin down the few candidates of polarized varieties that can
occur as twistor spaces. Our approach is different since the main ingredients turn out to be topological
rather than algebro-geometrical.

In Section 2 we review preliminaries of quaternion-Kähler geometry. In Section 3 we outline the proof
of Theorem 1.1.

2. Preliminaries

The existence of the Sp(3)Sp(1)-structure induces an isomorphism

T ∗M ⊗ C ∼= E ⊗ H,

whereE andH denote the locally defined vector bundles overM associated to the standard (faithful)
complex representations of Sp(3) and Sp(1) on E = C

6 and H = C
2 respectively. The quaternionic

structure ofM is characterized by a 4-formu coming from the second Chern class of the quaternionic
line bundleH , i.e., u = −c2(H). The multiple 4u = −c2(S

2H) is integral and non-degenerate [11], and
we shall call it thequaternionic class, for which we have the following lemma.

LEMMA 2.1. – Let M be a compact connected quaternion-Kähler12-manifold of positive scalar
curvature. The symmetric bilinear formQ onH 4(M) defined by

Q(α,β) =
∫

M

α ∧ β ∧ (4u),

α,β ∈ H 4(M), is positive definite.

Let d be the dimension of the isometry groupG of M, and define thequaternionic volumeby

v(M) = 〈
(4u)3, [M]〉.

Let � be the 26-dimensional faithful spin representation of Spin(12). The representation� splits

� = �+ ⊕ �−,

where�± are two copies of the 25-dimensional irreducible representation of Spin(11) ⊂ Spin(12). Clifford
multiplication of an element of�+ by an element ofT = T ∗M gives one in�−. Although the manifolds
under consideration are not spin in general [11] , there are well defined Dirac operators with coefficients in
SqH (cf. [8,11])

D
(
SqH

)
:�

(
�+ ⊗ SqH

) −→ �
(
�− ⊗ SqH

)
,

44



To cite this article: H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 43–46

with index

f (q) = indD
(
SqH

) = 〈
ch

(
SqH

)
Â(M), [M]〉, (1)

for q � 0 and 3+q even, where ch and̂A denote the Chern character of a (complex) vector and theÂ-genus
of the manifold, respectively. The parity condition ensures that the corresponding coupled Dirac operator
is globally defined. Note thatf (q) is a polynomial inq .

THEOREM 2.1 ([8,11]). – LetM be a12-dimensional positive quaternion-Kähler manifold. Then

π1(M) = 0,

π2(M) =
0 iff M is homothetic toHP3,

Z iff M is homothetic toGr2(C
5),

finite with 2-torsion otherwise

andM is spin if and only ifM is homothetic toHP3. Furthermore,

f (q) =
{0, if q = −3,−1,1,

1, if q = 3,
d � 5, if q = 5.

3. Sketch of the proof of the main theorem

The strategy of the proof is to pin down the possible values of the pair(d,v).
By Theorem 2.1, we can assume thatπ1(M) = 0, π2(M) is finite, and we can write down all the

characteristic numbers involved as coefficients inf (q) in terms ofd andv. In fact,

f (q) = 1

322560
(q − 1)(q + 1)(q + 3)(525v − 1260d + 11760

− 672q − 336q2 + vq4 + 4vq3 − 46vq2 − 100vq + 84dq2 + 168dq).

Clearly, at this point, we have far too many possible pairs(d,v) to deal with. The key point in our proof is to
find another zero off (q) which will give us a relation betweend andv and, therefore, reduce enormously
our task. This is a consequence of the following lemma whose proof depends on a deep result concerning
theÂ-genus of certain non-spin manifolds with finite second homotopy group and smoothS1 actions (see
[4,5] for the details).

LEMMA 3.1. – LetM be a positive quaternion-Kähler12-dimensional manifold different fromGr2(C
5).

Then

Â(M) = 0.

This, in turn, means thatf (0) = 0, so that

− 5

1024
v − 7

64
+ 3

256
d = 0. (2)

In particular, this implies thatd � 11 which already suggests thatM must be homogeneous. (2) gives
us the following list of possible integral pairs(d,v): (i) (11,4); (ii) (16,16); (iii) (21,28); (iv) (26,40);
(v) (31,52); (vi) (36,64).

The pairs (i) and (ii) are ruled out since the quadratic formQ in Lemma 2.1 is positive definite, i.e.,
v2 − 64v − 16vd + 576− 288d + 36d2 < 0. The pair (iii) corresponds to the real Grassmannian as can be
seen by standard geometrical considerations and the classification of cohomogeneity one manifolds in [2,9].
The pairs (iv) and (v) are also ruled out since there are no semisimple Lie groups of the given dimension,
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and rank less than or equal 3 (the upper bound is determined in [1]). The pair (vi) corresponds to the
quaternionic projective space, since the isotropy groupK at any point ofM must have dimension at least
24 and is contained in Sp(3)Sp(1). ✷
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