Integration by parts on Bessel Bridges and related stochastic partial differential equations

Lorenzo Zambotti

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Received 20 December 2001; accepted 27 December 2001

Note presented by Paul Malliavin.

Abstract

We prove integration by parts formulae with respect to the law of Bessel Bridges of dimension $\delta \geqslant 3$. For $\delta = 3$ we have an infinite-dimensional boundary measure, and for $\delta > 3$ a singular logarithmic derivative. We give applications to SPDEs with additive spacetime white noise and singular drifts, whose solutions are non-negative. *To cite this article: L. Zambotti, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209–212.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Integration par parties sur Ponts de Bessel et EDPS correspondantes

Résumé

Nous prouvons des formules d'intégration par parties par rapport à la loi des Ponts de Bessel de dimension $\delta \geqslant 3$. Remarquons que dans le cas $\delta = 3$ nous obtenons une mesure de bord infini-dimensionelle, et pour $\delta > 3$ une dérivée logarithmique singulière. Nous donnerons aussi des applications à des EDPS avec bruit blanc en espace-temps et termes de dérive singuliers, dont les solutions sont non-négatives. *Pour citer cet article : L. Zambotti, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209–212.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Consider the Stochastic Partial Differential Equation (SPDE):

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial \theta^2} + f(u) + \frac{\partial^2 W}{\partial t \partial \theta}, \\ u(0, \theta) = u_0(\theta), \quad u(t, 0) = u(t, 1) = 0, \quad t \geqslant 0, \ \theta \in [0, 1], \end{cases}$$
(1)

where $\{W(t,\theta)\}$ is a Brownian Sheet. If $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz-continuous, then it is well known that $P(u(t,\theta) \ge 0, \forall \theta \in [0,1]) = 0$ for all t > 0.

In this Note we consider equations of the form (1), where the drift term f(u) is well-defined only in the class of σ -finite measures on space-time, and whose solutions are a.s. non-negative and continuous.

For the equations we consider, we identify the unique invariant measure of the solution with the law π_{δ} of a Bessel Bridge over [0, 1] of dimension $\delta \geqslant 3$. Moreover, we write an infinite-dimensional integration by parts formula on π_{δ} and deduce properties of the solutions. Since the law of a Bessel Bridge is naturally

E-mail address: zambotti@sns.it (L. Zambotti).

supported by the convex set K of non-negative continuous functions on [0, 1], the behaviour at the boundary of K has to be taken into account. In particular, for the solution of the SPDE with reflection introduced by Nualart and Pardoux in [7], we can prove support and decomposition theorems for the reflecting term.

2. Integration by parts formulae

Let $(x_{\delta}(t))_{t\geqslant [0,1]}$ be the Bessel Bridge of dimension $\delta\geqslant 3$ from 0 to 0 over [0,1]. For $\delta=3$, denote also by $(x_{3,r}(t))_{t\geqslant [0,1]}$ the Bessel Bridge of dimension 3 from 0 to 0 over $[0,r], r\in]0,1]$: see [8]. The law π_{δ} of $x_{\delta}, \delta\geqslant 3$, is concentrated on the convex set K of all continuous $x:[0,1]\mapsto \mathbb{R}_+:=[0,\infty)$ such that x(0)=x(1)=0.

Denote by $C_b^1(L^2(0,1))$ the set of all $\varphi: L^2(0,1) \to \mathbb{R}$ bounded and with bounded continuous Fréchet gradient $\nabla \varphi: L^2(0,1) \to L^2(0,1)$. For all $\varphi \in C_b^1(L^2(0,1))$ and $h \in L^2(0,1)$, let $\partial_h \varphi$ denote the directional derivative of φ along h. For all $h \in H^2(0,1)$ let $h'' \in L^2(0,1)$ denote the second derivative of h. Finally, let $\langle \cdot, \cdot \rangle$ denote the canonical scalar product in $L^2(0,1)$.

THEOREM 2.1. – Let $\varphi \in C_h^1(L^2(0,1))$ and $h \in H^2 \cap H_0^1(0,1)$. Then:

$$\mathbb{E}\left[\partial_h \varphi(x_3)\right] = -\mathbb{E}\left[\varphi(x_3)\langle h'', x_3\rangle\right] - \int_0^1 \frac{h(r)}{\sqrt{2\pi r^3 (1-r)^3}} \mathbb{E}\left[\varphi(x_{3,r} \oplus \hat{x}_{3,1-r})\right] dr \tag{2}$$

$$\mathbb{E}\left[\partial_{h}\varphi(x_{\delta})\right] = -\mathbb{E}\left[\varphi(x_{\delta})\left(\left\langle h'', x_{\delta}\right\rangle + \frac{(\delta - 1)(\delta - 3)}{4}\left\langle h, \frac{1}{(x_{\delta})^{3}}\right\rangle\right)\right], \quad \delta > 3,\tag{3}$$

where $x_{3,r}$ and $\hat{x}_{3,r}$ are i.i.d. and $x_{3,r} \oplus \hat{x}_{3,1-r}(\tau) := x_{3,r}(\tau) \mathbf{1}_{[0,r]}(\tau) + \hat{x}_{3,1-r}(\tau-r) \mathbf{1}_{[r,1]}(\tau)$, $\tau \in [0,1]$.

Remark 1. – Compare (2) and (3) with the Divergence theorem in a regular domain $O \subseteq \mathbb{R}^d$:

$$\int_{O} (\partial_{h} \varphi) \rho \, \mathrm{d}x = -\int_{O} \varphi(\partial_{h} \log \rho) \rho \, \mathrm{d}x - \int_{\partial O} \varphi(n, h) \rho \, \mathrm{d}\mathcal{H}^{d-1} \tag{4}$$

where $h \in \mathbb{R}^d$, $\varphi, \rho \in C^1(\overline{O})$, $0 < \inf_O \rho \leq \sup_O \rho < \infty$, n is the inward-pointing normal vector to the boundary ∂O and \mathcal{H}^{d-1} is the (d-1)-dimensional Hausdorff measure. Then we have the following interpretations:

- The law π_3 of x_3 admits the field $x \mapsto x''$ as logarithmic derivative.
- Since $P(x_{3,r}(\theta) > 0, \forall \theta \in]0, r[) = 1, r \in]0, 1]$, the second term in the right-hand side of (2) is a boundary term: indeed, it is supported by the set $\partial^* K$ of all $x \in K$ vanishing at only one $r \in (0, 1)$. Notice that, by the Dirichlet boundary condition, the boundary ∂K is K itself in the sup-norm topology.
- The definition of $\partial^* K$ is reminiscent of the following finite-dimensional situation: the topological boundary of $\mathbb{R}^d_+ := \{(x_1,\ldots,x_d): x_i \geq 0,\ i=1,\ldots,d\},\ \delta \geq 2,\ \text{is}\ \partial\mathbb{R}^d_+ = \{x\in\mathbb{R}^d_+: \min_{i=1,\ldots,d}x_i=0\};\ \text{however, if we set}\ \partial^*\mathbb{R}^d_+ := \bigcup_{i=1}^d \{x_i=0,\ x_j>0,\ \forall j\neq i\},\ \text{then}\ \partial^*\mathbb{R}^d_+\ \text{is the relevant boundary for (4): indeed,}\ \partial\mathbb{R}^d_+ \backslash \partial^*\mathbb{R}^d_+\ \text{has Hausdorff-dimension}\ d-2\ \text{and in particular}\ \mathcal{H}^{d-1}(\partial\mathbb{R}^d_+ \backslash \partial^*\mathbb{R}^d_+) = 0.$
- For all $x \in \partial^* K$ with x(r) = 0, $r \in]0, 1[$, we have that $h(r) = \langle \delta_r, h \rangle$ corresponds to $\langle n, h \rangle$, i.e., the Dirac mass δ_r at r gives the inward-pointing normal vector n(x). Notice that $n \notin L^2(0, 1)$, which is related with the fact that K is not a \mathbb{C}^1 domain in $\mathbb{L}^2(0, 1)$.
- The logarithmic derivative of the law π_{δ} of x_{δ} , $\delta > 3$, is the map $x \mapsto x'' + (\delta 1)(\delta 3)/(4x^3)$. The singular term $x \mapsto 1/x^3$ gives a repulsion from 0 and substitutes the boundary term of (2). This phenomenon is reminiscent of the following finite-dimensional situation: let $m_{\delta}(dx) := x^{\delta-1} dx$ on $[0, \infty)$, $\delta \ge 1$; then, for all regular ψ with compact support:

$$\int_0^\infty \psi' \, \mathrm{d} m_1 = -\psi(0), \qquad \int_0^\infty \psi' \, \mathrm{d} m_\delta = -\int_0^\infty \psi(x) \frac{\delta - 1}{x} \, m_\delta(\mathrm{d} x), \quad \delta > 1.$$

To cite this article: L. Zambotti, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209-212

In this case, for $\delta = 1$ a boundary term appears, which for $\delta > 1$ is substituted by the repulsive logarithmic derivative $x \mapsto (\delta - 1)/x$.

For a general theory of integration by parts formulae in infinite dimension see [4].

3. Related stochastic partial differential equations

Let $\{W(t,\theta): t \ge 0, \ \theta \in [0,1]\}$ be a Brownian sheet independent of x_δ for all $\delta \ge 3$. In [7] it is proved that for all $u_0 \in K$, there exists a unique pair (u,η) , where $u:Q:=[0,\infty)\times[0,1]\mapsto\mathbb{R}$ is continuous adapted and η is a locally finite positive measure on $[0,\infty)\times[0,1]$, satisfying the stochastic partial differential equation with reflection:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 W}{\partial t \partial \theta} + \eta(t, \theta), \\ u(0, \theta) = u_0(\theta), \quad u(t, 0) = u(t, 1) = 0, \\ u \geqslant 0, \quad d\eta \geqslant 0, \quad \int_{\mathcal{Q}} u \, d\eta = 0. \end{cases}$$
 (5)

Set $u_3(\cdot, \cdot, u_0) := u : Q \mapsto \mathbb{R}_+, u_0 \in K$.

THEOREM 3.1. -

- (1) The law π_3 of x_3 is the unique invariant probability measure of the process $(u_3(t,\cdot,u_0))_{t\geqslant 0,\ u_0\in K}$.
- (2) For all Borel set $I \in (0, 1)$, the process $t \mapsto \eta([0, t] \times I)$ is an additive functional of u_3 , with Revuzmeasure:

$$\mathbb{E}\left[\int_0^1 \varphi(u_3(t,\cdot,x_3))\eta(\mathrm{d}t,I)\right] = \frac{1}{2} \int_I \frac{1}{\sqrt{2\pi r^3(1-r)^3}} \mathbb{E}\left[\varphi(x_{3,r} \oplus \hat{x}_{3,1-r})\right] \mathrm{d}r,\tag{6}$$

for $\varphi: L^2(0,1) \mapsto \mathbb{R}$ Borel and bounded.

(3) For all $u_0 \in K$, there exist a random Borel set $S \subset \mathbb{R}_+$ and a map $r : S \mapsto (0, 1)$, such that a.s.

$$\eta(\left[\mathbb{R}_{+}\times(0,1)\right]\setminus\left\{\left(s,r(s)\right):s\in S\right\})=0,$$

$$\forall s\in S\colon\quad u\left(s,r(s)\right)=0,\quad u(s,\theta)>0,\quad\forall\theta\in(0,1)\setminus\left\{r(s)\right\}.$$

(4) Let δ_r denote the Dirac mass at $r \in (0, 1)$. For all $u_0 \in K$, we have a.s. on $[0, \infty) \times (0, 1)$:

$$\eta(\mathrm{d}s,\mathrm{d}\theta) = \delta_{r(s)}(\mathrm{d}\theta)\,\eta\big(\mathrm{d}s,(0,1)\big). \tag{7}$$

(5) The process $(u_3(t,\cdot,u_0))_{t\geqslant 0,\ u_0\in K}$ is the Markov process properly associated with the symmetric Dirichlet form $(\mathcal{E}^3,D(\mathcal{E}^3))$ in $L^2(\pi_3)$, closure of the bilinear form:

$$C_b^1(L^2(0,1)) \ni \varphi, \psi \mapsto \frac{1}{2} \int_K \langle \nabla \varphi, \nabla \psi \rangle d\pi_3.$$

Point 1 in Theorem 3.1 was proved independently in [2] and in [9]. For basic definitions in the theories of Dirichlet forms and additive functionals we refer to [3] and [1].

Remark 2. – By Remark 1 and by (7), we can interpret Eq. (5) as a Skorokhod problem in the infinite dimensional convex set K, writing:

$$du = \frac{1}{2} \frac{\partial^2 u}{\partial \theta^2} dt + dW + \frac{1}{2} n(u) \cdot dL,$$

L. Zambotti / C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209-212

where $L_t := 2\eta([0, t] \times (0, 1))$, uniquely determined by its Revuz measure (6), increases only when $u(t, \cdot) \in \partial^* K$ and $n(u(t, \cdot))$ is the Dirac mass at r(t).

Let now $\delta > 3$ and consider the equation (see also [5] and [6]):

$$\begin{cases}
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial \theta^2} + \frac{(\delta - 3)(\delta - 1)}{8u^3} + \frac{\partial^2 W}{\partial t \partial \theta}, \\
u(0, \cdot) = u_0, \quad u(t, 0) = u(t, 1) = 0, \\
u \geqslant 0, \quad u^{-3} \in L^1_{loc}(\mathbb{R}_+ \times (0, 1)).
\end{cases} \tag{8}$$

THEOREM 3.2. -

- (1) For all $u_0 \in K$, there exists a unique adapted continuous solution $u_\delta(\cdot, \cdot, u_0) : Q \mapsto \mathbb{R}_+$ of (8).
- (2) The law π_{δ} of x_{δ} is the unique invariant probability measure of the process $(u_{\delta}(t,\cdot,u_0))_{t\geqslant 0,\ u_0\in K}$.
- (3) The process $(u_{\delta}(t,\cdot,u_0))_{t\geqslant 0,\ u_0\in K}$ is the Markov process properly associated with the symmetric Dirichlet Form $(\mathcal{E}^{\delta},D(\mathcal{E}^{\delta}))$ in $L^2(\pi_{\delta})$, closure of the bilinear form:

$$C_b^1(L^2(0,1)) \ni \varphi, \psi \mapsto \frac{1}{2} \int_K \langle \nabla \varphi, \nabla \psi \rangle \, \mathrm{d}\pi_\delta.$$

Remark 3. – The drift term $\kappa(\delta)/u^3$ in (8) has a repulsive effect from 0, which is strong enough to keep the solution u_δ non-negative without the need of the reflecting term η : this is related with the absence of boundary terms in (3).

Remark 4. – The construction of solutions of (5) and (8) uses pathwise methods: as a result u_{δ} , $\delta \geq 3$, is a strong solution, i.e., adapted to the filtration of the driving noise. The identification of $(u_{\delta}(t,\cdot,u_0))_{t\geq 0,\ u_0\in K}$ as the Markov process associated with the Dirichlet form $(\mathcal{E}^{\delta},D(\mathcal{E}^{\delta}))$, $\delta \geq 3$, is obtained a posteriori. On the other hand, the theory of Dirichlet forms is a powerful tool, which enables, for instance, to deduce the properties of u_3 listed in points (3), (4) of Theorem 3.1 from (6).

References

- [1] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin–New York, 1994.
- [2] T. Funaki, S. Olla, Fluctuations for $\nabla \phi$ interface model on a wall, Stoch. Processes Appl. 94 (2001) 1–27.
- [3] Z.M. Ma, M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992.
- [4] P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997.
- [5] C. Mueller, Long-time existence for signed solutions of the heat equation with a noise term, Probab. Theory Related Fields 110 (1998) 51–68.
- [6] C. Mueller, E. Pardoux, The critical exponent for a stochastic PDE to hit zero, in: Stochastic Analysis, Control, Optimization and Applications, Systems Control Found. Appl., Birkhäuser Boston, 1999, pp. 325–338.
- [7] D. Nualart, E. Pardoux, White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields 93 (1992) 77–89.
- [8] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991.
- [9] L. Zambotti, A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel Bridge, J. Funct. Anal. 180 (2001) 195–209.