Integration by parts on Bessel Bridges and related stochastic partial differential equations

Lorenzo Zambotti
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
Received 20 December 2001; accepted 27 December 2001
Note presented by Paul Malliavin.

Abstract

We prove integration by parts formulae with respect to the law of Bessel Bridges of dimension $\delta \geqslant 3$. For $\delta=3$ we have an infinite-dimensional boundary measure, and for $\delta>3$ a singular logarithmic derivative. We give applications to SPDEs with additive spacetime white noise and singular drifts, whose solutions are non-negative. To cite this article: L. Zambotti, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209-212. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Integration par parties sur Ponts de Bessel et EDPS correspondantes

Résumé Nous prouvons des formules d'intégration par parties par rapport à la loi des Ponts de Bessel de dimension $\delta \geqslant 3$. Remarquons que dans le cas $\delta=3$ nous obtenons une mesure de bord infini-dimensionelle, et pour $\delta>3$ une dérivée logarithmique singulière. Nous donnerons aussi des applications à des EDPS avec bruit blanc en espace-temps et termes de dérive singuliers, dont les solutions sont non-négatives. Pour citer cet article: L. Zambotti, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 209-212. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Consider the Stochastic Partial Differential Equation (SPDE):

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial \theta^{2}}+f(u)+\frac{\partial^{2} W}{\partial t \partial \theta} \tag{1}\\
u(0, \theta)=u_{0}(\theta), \quad u(t, 0)=u(t, 1)=0, \quad t \geqslant 0, \theta \in[0,1],
\end{array}\right.
$$

where $\{W(t, \theta)\}$ is a Brownian Sheet. If $f: \mathbb{R} \mapsto \mathbb{R}$ is Lipschitz-continuous, then it is well known that $P(u(t, \theta) \geqslant 0, \forall \theta \in[0,1])=0$ for all $t>0$.
In this Note we consider equations of the form (1), where the drift term $f(u)$ is well-defined only in the class of σ-finite measures on space-time, and whose solutions are a.s. non-negative and continuous.
For the equations we consider, we identify the unique invariant measure of the solution with the law π_{δ} of a Bessel Bridge over $[0,1]$ of dimension $\delta \geqslant 3$. Moreover, we write an infinite-dimensional integration by parts formula on π_{δ} and deduce properties of the solutions. Since the law of a Bessel Bridge is naturally

[^0]supported by the convex set K of non-negative continuous functions on [0, 1], the behaviour at the boundary of K has to be taken into account. In particular, for the solution of the SPDE with reflection introduced by Nualart and Pardoux in [7], we can prove support and decomposition theorems for the reflecting term.

2. Integration by parts formulae

Let $\left(x_{\delta}(t)\right)_{t \geqslant[0,1]}$ be the Bessel Bridge of dimension $\delta \geqslant 3$ from 0 to 0 over [0,1]. For $\delta=3$, denote also by $\left(x_{3, r}(t)\right)_{t \geqslant[0,1]}$ the Bessel Bridge of dimension 3 from 0 to 0 over [$\left.\left.\left.0, r\right], r \in\right] 0,1\right]$: see [8]. The law π_{δ} of $x_{\delta}, \delta \geqslant 3$, is concentrated on the convex set K of all continuous $x:[0,1] \mapsto \mathbb{R}_{+}:=[0, \infty)$ such that $x(0)=x(1)=0$.

Denote by $\mathrm{C}_{b}^{1}\left(\mathrm{~L}^{2}(0,1)\right)$ the set of all $\varphi: \mathrm{L}^{2}(0,1) \mapsto \mathbb{R}$ bounded and with bounded continuous Fréchet gradient $\nabla \varphi: \mathrm{L}^{2}(0,1) \mapsto \mathrm{L}^{2}(0,1)$. For all $\varphi \in \mathrm{C}_{b}^{1}\left(\mathrm{~L}^{2}(0,1)\right)$ and $h \in \mathrm{~L}^{2}(0,1)$, let $\partial_{h} \varphi$ denote the directional derivative of φ along h. For all $h \in \mathrm{H}^{2}(0,1)$ let $h^{\prime \prime} \in \mathrm{L}^{2}(0,1)$ denote the second derivative of h. Finally, let $\langle\cdot, \cdot\rangle$ denote the canonical scalar product in $\mathrm{L}^{2}(0,1)$.

THEOREM 2.1. - Let $\varphi \in \mathrm{C}_{b}^{1}\left(\mathrm{~L}^{2}(0,1)\right)$ and $h \in \mathrm{H}^{2} \cap \mathrm{H}_{0}^{1}(0,1)$. Then:

$$
\begin{gather*}
\mathbb{E}\left[\partial_{h} \varphi\left(x_{3}\right)\right]=-\mathbb{E}\left[\varphi\left(x_{3}\right)\left\langle h^{\prime \prime}, x_{3}\right\rangle\right]-\int_{0}^{1} \frac{h(r)}{\sqrt{2 \pi r^{3}(1-r)^{3}}} \mathbb{E}\left[\varphi\left(x_{3, r} \oplus \hat{x}_{3,1-r}\right)\right] \mathrm{d} r \tag{2}\\
\mathbb{E}\left[\partial_{h} \varphi\left(x_{\delta}\right)\right]=-\mathbb{E}\left[\varphi\left(x_{\delta}\right)\left(\left\langle h^{\prime \prime}, x_{\delta}\right\rangle+\frac{(\delta-1)(\delta-3)}{4}\left\langle h, \frac{1}{\left(x_{\delta}\right)^{3}}\right\rangle\right)\right], \quad \delta>3 \tag{3}
\end{gather*}
$$

where $x_{3, r}$ and $\hat{x}_{3, r}$ are i.i.d. and $x_{3, r} \oplus \hat{x}_{3,1-r}(\tau):=x_{3, r}(\tau) 1_{[0, r]}(\tau)+\hat{x}_{3,1-r}(\tau-r) 1_{1 r, 1]}(\tau), \tau \in[0,1]$.
Remark 1. - Compare (2) and (3) with the Divergence theorem in a regular domain $O \Subset \mathbb{R}^{d}$:

$$
\begin{equation*}
\int_{O}\left(\partial_{h} \varphi\right) \rho \mathrm{d} x=-\int_{O} \varphi\left(\partial_{h} \log \rho\right) \rho \mathrm{d} x-\int_{\partial O} \varphi\langle n, h\rangle \rho \mathrm{d} \mathcal{H}^{d-1} \tag{4}
\end{equation*}
$$

where $h \in \mathbb{R}^{d}, \varphi, \rho \in \mathrm{C}^{1}(\bar{O}), 0<\inf _{O} \rho \leqslant \sup _{O} \rho<\infty, n$ is the inward-pointing normal vector to the boundary ∂O and \mathcal{H}^{d-1} is the $(d-1)$-dimensional Hausdorff measure. Then we have the following interpretations:

- The law π_{3} of x_{3} admits the field $x \mapsto x^{\prime \prime}$ as logarithmic derivative.
- Since $\left.\left.P\left(x_{3, r}(\theta)>0, \forall \theta \in\right] 0, r[)=1, r \in\right] 0,1\right]$, the second term in the right-hand side of (2) is a boundary term: indeed, it is supported by the set $\partial^{*} K$ of all $x \in K$ vanishing at only one $r \in(0,1)$. Notice that, by the Dirichlet boundary condition, the boundary ∂K is K itself in the sup-norm topology.
- The definition of $\partial^{*} K$ is reminiscent of the following finite-dimensional situation: the topological boundary of $\mathbb{R}_{+}^{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \geqslant 0, i=1, \ldots, d\right\}, \delta \geqslant 2$, is $\partial \mathbb{R}_{+}^{d}=\left\{x \in \mathbb{R}_{+}^{d}: \min _{i=1, \ldots, d} x_{i}=\right.$ $0\}$; however, if we set $\partial^{*} \mathbb{R}_{+}^{d}:=\bigcup_{i=1}^{d}\left\{x_{i}=0, x_{j}>0, \forall j \neq i\right\}$, then $\partial^{*} \mathbb{R}_{+}^{d}$ is the relevant boundary for (4): indeed, $\partial \mathbb{R}_{+}^{d} \backslash \partial^{*} \mathbb{R}_{+}^{d}$ has Hausdorff-dimension $d-2$ and in particular $\mathcal{H}^{d-1}\left(\partial \mathbb{R}_{+}^{d} \backslash \partial^{*} \mathbb{R}_{+}^{d}\right)=0$.
- For all $x \in \partial^{*} K$ with $\left.x(r)=0, r \in\right] 0,1\left[\right.$, we have that $h(r)=\left\langle\delta_{r}, h\right\rangle$ corresponds to $\langle n, h\rangle$, i.e., the Dirac mass δ_{r} at r gives the inward-pointing normal vector $n(x)$. Notice that $n \notin \mathrm{~L}^{2}(0,1)$, which is related with the fact that K is not a C^{1} domain in $\mathrm{L}^{2}(0,1)$.
- The logarithmic derivative of the law π_{δ} of $x_{\delta}, \delta>3$, is the map $x \mapsto x^{\prime \prime}+(\delta-1)(\delta-3) /\left(4 x^{3}\right)$. The singular term $x \mapsto 1 / x^{3}$ gives a repulsion from 0 and substitutes the boundary term of (2). This phenomenon is reminiscent of the following finite-dimensional situation: let $m_{\delta}(\mathrm{d} x):=x^{\delta-1} \mathrm{~d} x$ on $[0, \infty), \delta \geqslant 1$; then, for all regular ψ with compact support:

$$
\int_{0}^{\infty} \psi^{\prime} \mathrm{d} m_{1}=-\psi(0), \quad \int_{0}^{\infty} \psi^{\prime} \mathrm{d} m_{\delta}=-\int_{0}^{\infty} \psi(x) \frac{\delta-1}{x} m_{\delta}(\mathrm{d} x), \quad \delta>1
$$

In this case, for $\delta=1$ a boundary term appears, which for $\delta>1$ is substituted by the repulsive logarithmic derivative $x \mapsto(\delta-1) / x$.
For a general theory of integration by parts formulae in infinite dimension see [4].

3. Related stochastic partial differential equations

Let $\{W(t, \theta): t \geqslant 0, \theta \in[0,1]\}$ be a Brownian sheet independent of x_{δ} for all $\delta \geqslant 3$. In [7] it is proved that for all $u_{0} \in K$, there exists a unique pair (u, η), where $u: Q:=[0, \infty) \times[0,1] \mapsto \mathbb{R}$ is continuous adapted and η is a locally finite positive measure on $[0, \infty) \times] 0,1[$, satisfying the stochastic partial differential equation with reflection:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} W}{\partial t \partial \theta}+\eta(t, \theta) \tag{5}\\
u(0, \theta)=u_{0}(\theta), \quad u(t, 0)=u(t, 1)=0 \\
u \geqslant 0, \quad \mathrm{~d} \eta \geqslant 0, \quad \int_{Q} u \mathrm{~d} \eta=0
\end{array}\right.
$$

Set $u_{3}\left(\cdot, \cdot, u_{0}\right):=u: Q \mapsto \mathbb{R}_{+}, u_{0} \in K$.
THEOREM 3.1.-

(2) For all Borel set $I \Subset(0,1)$, the process $t \mapsto \eta([0, t] \times I)$ is an additive functional of u_{3}, with Revuzmeasure:

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{1} \varphi\left(u_{3}\left(t, \cdot, x_{3}\right)\right) \eta(\mathrm{d} t, I)\right]=\frac{1}{2} \int_{I} \frac{1}{\sqrt{2 \pi r^{3}(1-r)^{3}}} \mathbb{E}\left[\varphi\left(x_{3, r} \oplus \hat{x}_{3,1-r}\right)\right] \mathrm{d} r \tag{6}
\end{equation*}
$$

for $\varphi: \mathrm{L}^{2}(0,1) \mapsto \mathbb{R}$ Borel and bounded.
(3) For all $u_{0} \in K$, there exist a random Borel set $S \subset \mathbb{R}_{+}$and a map $r: S \mapsto(0,1)$, such that a.s.

$$
\begin{aligned}
& \eta\left(\left[\mathbb{R}_{+} \times(0,1)\right] \backslash\{(s, r(s)): s \in S\}\right)=0 \\
& \forall s \in S: \quad u(s, r(s))=0, \quad u(s, \theta)>0, \quad \forall \theta \in(0,1) \backslash\{r(s)\}
\end{aligned}
$$

(4) Let δ_{r} denote the Dirac mass at $r \in(0,1)$. For all $u_{0} \in K$, we have a.s. on $[0, \infty) \times(0,1)$:

$$
\begin{equation*}
\eta(\mathrm{d} s, \mathrm{~d} \theta)=\delta_{r(s)}(\mathrm{d} \theta) \eta(\mathrm{d} s,(0,1)) \tag{7}
\end{equation*}
$$

(5) The process $\left(u_{3}\left(t, \cdot, u_{0}\right)\right)_{t \geqslant 0}, u_{0} \in K$ is the Markov process properly associated with the symmetric Dirichlet form $\left(\mathcal{E}^{3}, D\left(\mathcal{E}^{3}\right)\right)$ in $\mathrm{L}^{2}\left(\pi_{3}\right)$, closure of the bilinear form:

$$
\mathrm{C}_{b}^{1}\left(\mathrm{~L}^{2}(0,1)\right) \ni \varphi, \psi \mapsto \frac{1}{2} \int_{K}\langle\nabla \varphi, \nabla \psi\rangle \mathrm{d} \pi_{3}
$$

Point 1 in Theorem 3.1 was proved independently in [2] and in [9]. For basic definitions in the theories of Dirichlet forms and additive functionals we refer to [3] and [1].

Remark 2. - By Remark 1 and by (7), we can interpret Eq. (5) as a Skorokhod problem in the infinite dimensional convex set K, writing:

$$
\mathrm{d} u=\frac{1}{2} \frac{\partial^{2} u}{\partial \theta^{2}} \mathrm{~d} t+\mathrm{d} W+\frac{1}{2} n(u) \cdot \mathrm{d} L
$$

where $\mathrm{L}_{t}:=2 \eta([0, t] \times(0,1))$, uniquely determined by its Revuz measure (6), increases only when $u(t, \cdot) \in \partial^{*} K$ and $n(u(t, \cdot))$ is the Dirac mass at $r(t)$.

Let now $\delta>3$ and consider the equation (see also [5] and [6]):

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{(\delta-3)(\delta-1)}{8 u^{3}}+\frac{\partial^{2} W}{\partial t \partial \theta} \tag{8}\\
u(0, \cdot)=u_{0}, \quad u(t, 0)=u(t, 1)=0 \\
u \geqslant 0, \quad u^{-3} \in \mathrm{~L}_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+} \times(0,1)\right)
\end{array}\right.
$$

THEOREM 3.2.-
(1) For all $u_{0} \in K$, there exists a unique adapted continuous solution $u_{\delta}\left(\cdot, \cdot, u_{0}\right): Q \mapsto \mathbb{R}_{+}$of (8).
(2) The law π_{δ} of x_{δ} is the unique invariant probability measure of the process $\left(u_{\delta}\left(t, \cdot, u_{0}\right)\right)_{t \geqslant 0, u_{0} \in K}$.
(3) The process $\left(u_{\delta}\left(t, \cdot, u_{0}\right)\right)_{t \geqslant 0, u_{0} \in K}$ is the Markov process properly associated with the symmetric Dirichlet Form $\left(\mathcal{E}^{\delta}, D\left(\mathcal{E}^{\delta}\right)\right)$ in $\mathrm{L}^{2}\left(\pi_{\delta}\right)$, closure of the bilinear form:

$$
\mathrm{C}_{b}^{1}\left(\mathrm{~L}^{2}(0,1)\right) \ni \varphi, \psi \mapsto \frac{1}{2} \int_{K}\langle\nabla \varphi, \nabla \psi\rangle \mathrm{d} \pi_{\delta}
$$

Remark 3. - The drift term $\kappa(\delta) / u^{3}$ in (8) has a repulsive effect from 0 , which is strong enough to keep the solution u_{δ} non-negative without the need of the reflecting term η : this is related with the absence of boundary terms in (3).

Remark 4. - The construction of solutions of (5) and (8) uses pathwise methods: as a result $u_{\delta}, \delta \geqslant 3$, is a strong solution, i.e., adapted to the filtration of the driving noise. The identification of $\left(u_{\delta}\left(t, \cdot, u_{0}\right)\right)_{t \geqslant 0, u_{0} \in K}$ as the Markov process associated with the Dirichlet form $\left(\mathcal{E}^{\delta}, D\left(\mathcal{E}^{\delta}\right)\right), \delta \geqslant 3$, is obtained a posteriori. On the other hand, the theory of Dirichlet forms is a powerful tool, which enables, for instance, to deduce the properties of u_{3} listed in points (3), (4) of Theorem 3.1 from (6).

References

[1] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin-New York, 1994.
[2] T. Funaki, S. Olla, Fluctuations for $\nabla \phi$ interface model on a wall, Stoch. Processes Appl. 94 (2001) 1-27.
[3] Z.M. Ma, M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992.
[4] P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997.
[5] C. Mueller, Long-time existence for signed solutions of the heat equation with a noise term, Probab. Theory Related Fields 110 (1998) 51-68.
[6] C. Mueller, E. Pardoux, The critical exponent for a stochastic PDE to hit zero, in: Stochastic Analysis, Control, Optimization and Applications, Systems Control Found. Appl., Birkhäuser Boston, 1999, pp. 325-338.
[7] D. Nualart, E. Pardoux, White noise driven quasilinear SPDEs with reflection, Probab. Theory Related Fields 93 (1992) 77-89.
[8] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991.
[9] L. Zambotti, A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel Bridge, J. Funct. Anal. 180 (2001) 195-209.

[^0]: E-mail address: zambotti@sns.it (L. Zambotti).

