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Abstract Weil's well-known converse theorem shows that modular forfng My (Tg(g)) are
characterized by the functional equation for twists/gf(s). Conrey—Farmer had partial
success at replacing the assumption on twists by the assumptiop(ef having an Euler
product of the appropriate form. In this Note we obtain a hybrid version of Weil's and
Conrey—Farmer’s results, by proving a converse theorem fgraalll under the assumption
of the Euler product and, moreover, of the functional equation for the twists to a single
modulus.To cite thisarticle: A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. | 334 (2002)
621-624. 0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Unenote sur lesthéorémes inverses de GL,

Résumé Le théoreme bien connu de Weil montre que les formes modulgires\; (Ig(g)) sont
caractérisées par I'équation fonctionnelle des fonctions L tordues attach@eSanrey—
Farmer ont partiellement réussi a remplacer cette hypothése par célle(ora un produit
eulérien. Dans cette Note, on obtient une version hybride des résultats de Weil et de Conrey—
Farmer, en prouvant un théoréme inverse pour oit1, sous I'hypothése d’'un produit
eulérien et de I'équation fonctionnelle pour les fonctidngordues par rapport a un seul
module.Pour citer cet article: A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. | 334 (2002)
621-624. 0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

1. Introduction

In this Note we obtain a kind of hybrid version of Weil's [5] and Conrey—Farmer’s [1] converse theorems.
In fact, we prove a converse theorem for@lk 1 under the assumption of the Euler product and, moreover,
of the functional equation for the twists by all primitive characterssimgle suitable prime modulus. We
keep the prototypical case considered by Conrey—Farmer, although a similar result can certainly be proved
in more general G situations. We follow the notation in Iwaniec’s book [4] and in Conrey—Farmer [1].
Moreover, for a given primitive charactgrmodulo a prime- with (¢, r) = 1, we consider the functional
equation

Ags, ) = wOOA (k= 5,7, (1.1)
where is the sign of the functional equation satisfiedby(s). Our result is
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THEOREM. —Let ¢,k > 1 be integers, k even. Suppose A ¢(s) is EBV and L (s) satisfies both a
functional equation and an Euler product of degree 2, level ¢ and weight k. Suppose further that for a
prime r in a suitable arithmetic progression (depending on the algebraic structure of the group I'1(q)) a
(mod gc) with (gc, a) = 1 and for any primitive character x (modr), A ¢ (s, x) is EBV and satisfies the
functional equation (1.1). Then f € Sx(T'o(q)).

We remark thatr andc are effectively computable. We refer to Section 3 for a simple algorithm for
findinga andc starting from a given set of generatorslaf(g), and for an upper bound on

2. Proof of thetheorem

Throughout the proof we use the slash operator of weighttended to the group alget@ﬁGL’g ®)] by
linearity, i.e.,fl, =3 a; fl,, if y =3 ;a;y;. Let T = (3 1) andW = W, = (7 9). Recall thatfiy = f
trivially, and by Hecke’s theory it is well known thafi, = = f and fiw = f, sinceL ¢(s) satisfies a
functional equation of degree 2, levelnd weight. For p { g, the Hecke operatdf, is defined by

p—1
_(p O 15
=5 9)2(0 )
and fir, = a, f sinceL s(s) has an Euler product of degree 2, leyeand weightk. See, e.g., Lemma 1
of [1]. Further, anyy € T'o(¢g) can be decomposed as follows: for every e Z

_(a bo\ (1 -t m  —b 1 —s
yo_(qco do>_<0 1><—qc d)(O 1)’ (2.1)
with m = ag + gcot, d = do + qcos, ¢ = —co and—b = bg + ms + dpt; see p. 130 of [4]. In view of (2.1),
foranym, b, ¢, d € 7 with m # 0 andmd — bgc = 1 we write

b _
y(;) = (_’ZC db> € To(q)- (2.2)

Note that givemn, b with (m, gb) = 1 there exist, d such thai;/(%) € I'p(g); we denote by/(%) any such
matrix. Finally, forx € R we writea (x) = (53) andf(2) = (1 — y(2))a(2). We need some lemmas.

LEMMA 1 (Weil). —Let r bea primewith (g, r) = 1. Suppose L ¢ (s, x) satisfies (1.1)for any primitive
character x (modr). Then fg(,) doesnot depend on b for (b, r) = 1.

Proof. — This is a special case of Lemma 7.9 of [4]a

Let m be a non-zero integer witly,m) = 1 and letb run over a set of reduced residues modulo
For eachh choose any matri);/(%) as above, and consider #scoefficient in (2.2). We denote h® the
product of suchi-coefficients, a® runs over a set of reduced residues moduldNith this notation we
have

LEMMA 2 (Conrey—Farmer). ket m be a non-zero integer with (¢, m) =1 and b run over a set of
reduced residues (modm). Suppose fir = f, fi» =% f andfor each p|D, fir, =&, f with some§, € C.
Then Z;, fipw/my =0, where b runs over the set of reduced residues (mod ).

Proof. — This is Corollary 2 of [1]. O
Letr be as in Lemma 1. From Lemmas 1 and 2 we deducefihat) = 0, and hence
fywm=f forany(r,b)=1, (2.3)
sincef(2) = (1 - y(2)a(2) anda(?) is a translation.

We denote by the group ofy € SL»(Z) such thatfj, = f. Clearly,T andW belong toH. Moreover,
by (2.3),y(%) belongs toH for any(r, b) = 1. Our aim is to show thdto(g) C H.
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LEMMA 3. —Let m be a non-zero integer with (¢, m) =1 and suppose I'1(¢) C H. Then fj,, (5/m) does
not depend on b for (m, b) = 1.

Proof. —Let b, b’ be coprime withn. We want to show thafi, /m) = fiy @//m)- In fact,
v b _1_ md—qgb'c  mb—b'm '\ _
Y\ )P\ ) T \qed =c¢ay —qbc’ +ma’ ) =7
with md — gb’c, —qbc’ + md’ =1 (mod ¢), and hencer € I'1(¢). The result follows at once. O
PrROPOSITION —IfT"1(q) C H thenTo(q) C H.

Proof. — Let y9 € T'o(g). Clearly, by Dirichlet's theorem we can choosén (2.1) in such a way that
m = p, p prime with (g, p) = 1. Accordingly, we have the decomposition

b
Yo= T"y(—) T (2.4)
p
for someb. Writing R, ="/ (%), by Lemmas 2 and 3 we have
fa-ye/mr, =0. (2.5)

Denoting by the 2x 2 identity matrix, a computation shows that

2 2 2 a+ad
I+2R,+R;=(I+R,)*= Z a< > ):p([+Rp),
a,a’=1
and hence = R, (;17 R, — L=51). Applying 511 R, — L=% I to the right of both sides of (2.5) we therefore
get f, »/p) = f, and the result follows by (2.4).0

Now we are ready for the proof of the theorem. In view of the proposition, it suffices to provg thatf
for everyy € I'1(g). Let

yj=<qacfj Z;), j=1...h (2.6)
be a set of generators bf (). It is enough to prove thafj,, = f for j =1,..., h. We first show that if
v1, ..., yn are any set of matrices in (¢) of the form (2.6) with entries satisfying

(g,c1---cp)=1 and (¢,cj))=1 forisj, (2.7)
thenfj,, = f for j =1,..., h. To this end, consider the system

x=aj (modq|cj|), j=21...,h, (2.8)

and note that every solution of the system

x=a; (modic;)), j=1,...,h,

{ x=1(modg)

is a solution of (2.8) as well. In fact,; =1 (modg) for j =1,..., A sincey; € I'1(g). Moreover, by the
chinese remainder theorem, the system (2.9) has a solutiovod g|c1 - - - ¢, |) with some(a, gc1---¢p) =
1. Therefore, by Dirichlet's theorem there exists a prinvéth (¢, r) = 1 satisfying (2.8). Then, in view of
the expression of in (2.1), by the decomposition (2.1) there exist integers; andb} with (r, b;.) =1
such that

(2.9)

b
y]-:T_’fy<—]>T_Sf, j=1,...,h (2.10)
r

Hence, supposing that suchais the prime referred to in the theorem (which is consistent, sifxdongs
to a progression of type modulogc with (a, gc) = 1), by (2.3) we getfj,, = f for j =1,..., h.
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It is therefore left to show that the generator§afg) can be suitably linked to matrices satisfying (2.7).
To this end we note the following identity in S{Z)

a)(q‘lc z>w_1=<_cf]b —ac>' (2.11)

Next we observe thatif;, j =1,..., h, are the generators in (2.6) ande Z, then
) . 4 b
= (4 il Th; r i=1...,h.
Vi <ch gty +d; e, j=1...,
Moreover, sincéa;, b;) = 1, by Dirichlet's theorem we can choose this in such a way that;t; +b; =
pj = prime, p; # p; and(q, p;) = 1. Writing/; = gc;t; + d; we havey;T' = (;’él”l'l) forj=1,...,h,
and hence by (2.11) o
o l; —Cj
wy;iTVw 1:( / f>: teTi(q), j=1,...,h, 2.12
2 —ap; @ vi€li(q), J (2.12)
say. Thus the entries of eao,lfj satisfy the coprimality conditions in (2.7) and heng¢g, = f for
J
j=1,...,h.
In conclusion, from (2.12) we have that the generatars .., y; satisfy y; = w‘ly;wT"i, j=
1,...,h, with yj/- € H, and hencd'1(q) C H. Finally, the assertion thagt € S (I'o(q)) is verified by the
same argument in the proof of Corollary 1 of [1], and the theorem is proved.

3. An algorithm

We first note that the prime referred to in the theorem can be obtained by applying the procedure
leading to (2.10) to the matric%‘ in (2.12) in place of the matricgs in (2.6). Moreover, the numbeys;
in (2.12) do not need to be primes, the important property being that the entries of the nyaytrsimisfy
conditions (2.7). A simple algorithm to find the required primgtarting from a given set of generators of
I'1(¢g) can be described as follows.
Let y;, j =1,...,h, be a set of generators dfi(¢g) with entries given by (2.6), and suppose that
laj| < Afor j=1,...,h. Choosep; to be the least positive integer satisfyipg = b1 (mod a1) and
(g, p1) = 1. Next choose to be the least positive integer satisfying= b> (mod az) and(gp1, p2) =1,
thenps with p3 = b3 (modaz) and(gp1p2, p3) =1 and so on. Thus we get matric;e]/sas in (2.12), with
(g, p1---pn)=1and(p;, pj) = 1fori # j. By sieve theorygee Theorem 8.4 of Halberstam—Richert [2])
it follows that for any fixeck > 0 one has
pi<neq AT, j=1,...h, (3.1)
where the implied constant is effectively computable in termsafide. Now we consider the system (2.9)
with a; =1; andc; = p;, j =1,..., h, and its solutioru (mod gc), wherec = p1 --- p;. The required
prime r can therefore be chosen as the least prime in the progressiorod ¢gc¢). In view of Heath—
Brown'’s [3] bound Qg°®) for the least prime in an arithmetic progressionod ¢), by (3.1) we have the
bound
; <<h,g (th)5.5+8.
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