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Abstract We show that fiberwise stable vector bundles are preserved by relative Fourier–Mukai
transforms between elliptic threefolds with relative Picard number one. Using these bundles
we define new invariants of elliptic fibrations, and we relate the invariants of a space with
those of a relative moduli space of stable sheaves on it. As a byproduct, we calculate the
intersection form of a certain new example of an elliptic Calabi–Yau threefold. To cite this
article: A. Căldăraru, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 469–472.  2002 Académie
des sciences/Éditions scientifiques et médicales Elsevier SAS

Fibrés vectoriels relativement stables sur variétés elliptiques de
dimension trois dont le nombre relatif de Picard est un

Résumé Nous prouvons que les fibrés vectoriels relativement stables sont préservés par des
transformées de Fourier–Mukai entre variétés elliptiques de dimension trois dont le nombre
relatif de Picard est un. En utilisant ces fibrés nous définissons des nouveaux invariants de
variétés elliptiques, et nous étudions la relation entre les invariants d’une variété et ceux
d’un éspace relatif de modules des fibrés stables sur elle. Ces résultats nous permettent de
calculer la forme d’intersection sur un certain nouvel exemple de variété de Calabi–Yau
de dimension trois. Pour citer cet article : A. Căldăraru, C. R. Acad. Sci. Paris, Ser. I
334 (2002) 469–472.  2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

1. Introduction

The object of this note is to generalize to the case of elliptic threefolds with relative Picard number
one classic results regarding stable vector bundles on elliptic curves and their Fourier–Mukai transforms.
Several results of this type are known: partial results by Bridgeland [3] for arbitrary elliptic fibrations,
and strong results by Bartocci, Bruzzo, Hernández-Ruipérez and Muñoz-Porras [2] for elliptic fibrations
without reducible fibers. Our primary interest is in applying this theory to the study of elliptic Calabi–Yau
threefolds, so we need to have results general enough to handle reducible curves of arithmetic genus 1.

Stable bundles on an elliptic curve E, of rank r and degree d , (r, d) = 1, are well understood:

THEOREM (Atiyah [1]). – For every line bundleL of degreed on E, there exists a unique stable vector
bundleV (r,L) of rankr and determinantL.
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THEOREM (Tu [8]). – A vector bundleF on E of rankr and degreed is stable if and only if it is simple
(i.e.,Hom(F,F) = C).

Let a, b be coprime integers, with a > 0, and let M be the moduli space of stable bundles of rank a,
degree b on E (which is a fine moduli space). Fix a universal sheaf U on X × M , and let c be the degree of
the restriction U|{x}×M for x ∈ X, which is independent of x . Let pE, pM be the projections from E × M

to E, M , respectively.
THEOREM (Bridgeland [3]). – Let F be a stable vector bundle onM, of slopeµ(F) �= −c/a. Then the

Fourier–Mukai transformG of F, G = �U
M→E(F) = RpE,∗(p∗

M(F) ⊗ U) is a stable vector bundle onE of
slopeµ(G) �= b/a, possibly shifted.

The stability of F is used in two ways in the proof of the above theorem. It is first used to conclude that
G consists of a single vector bundle, possibly shifted. Then, since F is simple and simplicity is preserved
by Fourier–Mukai transforms, G is simple, and thus stable by Tu’s theorem.

2. Fiberwise stable bundles

Our goal is to replace the elliptic curve E in the above results by an elliptic threefold X/S, with X and S

smooth, thus allowing for some reducible fibers. In such generality, only partial results are known, mainly
due to Bridgeland [4]. Note that the theorems of Atiyah and Tu hold when E is replaced by an irreducible
curve of arithmetic genus 1, but fail if E is reducible. We shall assume that the fibration X/S has no multiple
fibers, its relative Picard number ρ(X/S) = ρ(X) − ρ(S) is equal to one, Pic(X) has no torsion, and the
general singular fiber of X/S is irreducible. These conditions are often satisfied by general members of
families of elliptic Calabi–Yau threefolds [7]. The assumption that X and S are smooth ensures that all the
fibers of X → S are Cohen–Macaulay.

Given such an elliptic fibration X/S, and r , d coprime integers with r > 0, denote by VX(r, d) the class
of vector bundles of rank r on X, whose restriction to each fiber of X/S is stable of degree d . Since we are
dealing with possibly reducible fibers, we use Gieseker’s definition of stability. In general, the definition
of VX(r, d) depends on the choice of polarization in each fiber, but the assumption ρ(X/S) = 1 implies
that each fiber is polarized in a unique way (up to multiples) by the restriction of a polarization of X.
From here, we shall always assume the fibers polarized in this way. The case r < 0 can also be included in
the definition, by considering elements of VX(r, d) as objects in Db

coh(X) which consist of a single sheaf,
possibly shifted (if E is a V (r, d), then E[1] is a V (−r,−d)).

PROPOSITION 1. – Elements ofVX(r, d) differ by tensoring by pull-backs of line bundles inPic(S) and
by even shifts in the derived category.

Proof. –Follows from Atiyah’s result on irreducible curves of genus 1 and Hartogs’ theorem.

We want to study the behaviour of the V (r, d)-bundles under Fourier–Mukai transforms. Let n be the
smallest positive degree of a multisection of X/S (alternatively, this is the smallest degree of a polarization
of the fibers which is the restriction of a polarization from X/S). Consider integers a > 0 and b so that
(na, b) = 1, and let M/S be the relative moduli space of stable sheaves of rank a, degree b on the fibers
of X/S, in the sense of Simpson. The space M has a natural map to S which makes it into an elliptic
fibration which satisfies all the conditions imposed on X/S. The fibration M/S is a fine moduli space, and
the extension by zero U to X × M of a universal sheaf on X ×S M induces a Fourier–Mukai transform
�U

M→X : D(M) → Db
coh(X) [3,4]. Let c be the degree of the restriction of U to a fiber {x} × M for x ∈ X

and let e = (bc − 1)/a. For r and d coprime define VM(r, d) in an analogous fashion to VX(r, d).

THEOREM 2. – If F is a VM(r, d), for r, d coprime,d/r �= −c/a, then the Fourier–Mukai transform
G = �U

M→X(F) is aVX(r ′, d ′), where(r ′, d ′) are given by

(
r ′
d ′

)
=

(
c a

e b

)(
r

d

)
.
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The relationship between (r ′, d ′) and (r, d) has been known previously [3]; what is new is the fact that
G is a VX(r ′, d ′). The proof of Theorem 2 follows the same lines as the proof of Bridgeland’s theorem,
and in order to conclude that G is a single, locally free sheaf on X we need to have the restriction of F to
every fiber of M/S be stable. (This part of the proof goes through with almost no restrictions on X/S.) But
although we are guaranteed that the restriction of G to all the fibers of X/S is simple, we can no longer
apply Tu’s result to conclude that it is stable. Thus, for general fibrations, the situation is asymmetric (we
need to start with a sheaf that is stableon all the fibers, and we end up with one that is only simple). The
crucial observation in the case of relative Picard number one is the following:

PROPOSITION 3. – Let E be a(possibly reducible) Cohen–Macaulay curve of arithmetic genus1, and
let E be a locally free sheaf onE whose determinant is either ample or anti-ample. ThenE is simple if and
only if it is stable with respect to the polarization induced bydetE or −detE.

Proof. –One implication is trivial, so assume that E is simple, and that L = detE is ample. Then
L = O(

∑
aiPi), with ai > 0 and Pi ∈ Esmooth. For any torsion-free sheaf F on E, let µL(F) =

χ(F)/
∑

ai rkPi (F), where rkPi (F) = dimFPi . The reduced Hilbert polynomial of F, computed with
respect to L, is equal to t + µL(F). Thus, to show that E is stable with respect to L, we need to show
that if F is a proper subsheaf of E, then µL(F) < µL(E). A straightforward computation shows that
µL(F ⊗ E∨) = µL(F) − µL(E). If F is a subsheaf of E, Hom(F,E) �= 0 and thus H 1(E,F ⊗ E∨) =
Ext1(E,F) = Hom(F,E) �= 0 by Serre duality (which can be applied because E is locally free). If
µL(F) � µL(E), then χ(F ⊗ E∨) � 0, so we conclude that Hom(E,F) = H 0(E,F ⊗ E∨) �= 0. Thus
there is a non-zero map E → F, which composed with the inclusion F ⊂ E yields a non-trivial map E → E,
contradicting the assumption that E is simple. The case detE anti-ample is treated in a similar way.

COROLLARY 4. – LetE be a locally free sheaf onX. Then its restriction to a fiber ofX/S is stable(with
respect to the unique polarization of the fiber coming fromX) if and only if it is simple.

Note that detE must restrict to a multiple of the polarization OX/S(1) on each fiber, because ρ(X/S) = 1.
If this restriction is non-trivial, we can apply Proposition 3. If detE is the trivial line bundle in each fiber,
E(1) is stable in each fiber with respect to OX/S(1), which implies that E is fiberwise stable.

3. Invariants of elliptic fibrations

We would like to have invariants that enable us to compare X and M . Define PX(r, d) to be the class of
elements of Db

coh(S) that are of the form RπX,∗F for F a VX(r, d) (πX : X → S is the structural map of the
fibration X/S). Define PM(r, d) analogously.

The following two propositions are applications of Proposition 1, the projection formula, Grothendieck–
Serre duality and the fact that the dual of a V (r, d) is a V (r,−d), which follows from Proposition 3.

PROPOSITION 5. – For d �= 0, elements ofPX(r, d) are vector bundles(possibly shifted) which differ
by tensoring by line bundles inPic(S) and by even shifts in the derived category.

PROPOSITION 6. – PX(r, d) = PX(r,−d)∨[1] = PX(−r, d)∨ = PX(−r,−d)[1], wherePX(r,−d)∨[1]
is obtained by dualizing and shifting every element ofPX(r,−d), and PX(−r, d)∨, PX(−r,−d)[1] are
defined in a similar way.

THEOREM 7. – We havePX(r ′, d ′) = RπM,∗(VM(r, d)⊗VM(b, e)), wherea, b, c, e andr, d , r ′, d ′ are
as in Theorem2. In particular, if r = 1, PX(c + ad, e + bd) = PM(b, e + bd).

Proof. –Let F be a VM(r, d), and let G = �U
M→X(F) = RpX,∗(p∗

MF
L⊗ U), where pX,pM are the

projections from X×M to X and M , respectively. Then G is a VX(r ′, d ′), RπX,∗G = RπM,∗(F⊗RpM,∗U),
and all we need to show is that RpM,∗U is a VM(b, e). But RpM,∗U = �U

X→M(OX), so the result follows
from Theorem 2 once we show that X is the relative moduli space of stable sheaves of rank a, degree c

471
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on M , and U is a universal sheaf for this moduli problem. The proof of this fact (which is known for elliptic
surfaces, [3]) will be presented elsewhere. ✷

THEOREM 8. – If X/S also satisfies the property of being generic(see [7] for a definition), then
PX(r, d) = PX(r ′, d) for r = r ′ mod d .

The proof of Theorem 8 is more involved, requiring the use of twisted derived categories [6], and will
be included in a future paper. In the case of a single elliptic curve E, the proof does not rely on twisted
sheaves, and we include a sketch here. If F is a VE(r, d), then its transform G to Jac(E) is a VJac(E)(−d, r).
On Jac(E) there is a naturally defined OJac(E)(−1), and G(−1) is a VJac(E)(−d, r +d). Transforming G(−1)

back to E yields a VE(r + d, d), whose global sections can be shown to be the same as those of F.

4. An explicit calculation

In [6, 6.2.2] we studied an explicit generic elliptic Calabi–Yau threefold X/P2, constructed as the pfaffian
of a certain 5 × 5 matrix of bihomogeneous forms on P2 × P4. We described all the minimal birational
models of X, which consist of X, a flop X+ of X which is contained in P4 ×P5 and has no elliptic fibration
structure, and a flop X++ of X+ contained in P5 × P2, which has an elliptic fibration structure given by the
map X++ → P2. There is no apparent relation between the original elliptic fibration structure on X and the
one on X++. Since X++ is obtained from X through a sequence of flops, Db

coh(X
++) ∼= Db

coh(X) [5].
On X we have n = 5; taking a = 1, b = 2 we obtain an elliptic Calabi–Yau threefold M/P2, with

Db
coh(X) ∼= Db

coh(M). It can be shown that VX(1,5) and VX(3,5) are non-empty, and thus VX(r,5) is non-
empty for all r relatively prime to 5. Comparing the invariants PX(r,5) and PM(r,5) for all r relatively
prime to 5 and using Grothendieck–Riemann–Roch, we compute c2(M) and the cubic form on H 2(M,Z).
These topological invariants can be computed for X++, and they are the same as those of M .

Thus the two Calabi–Yau threefolds X++ and M have Db
coh(X

++) ∼= Db
coh(M), and have the same c2 and

cubic form. In view of Wall’s results [9], it seems natural to conjecture that X++ and M are deformation
equivalent. If they are non-isomorphic, this is likely to lead to a new counterexample to Torelli for Calabi–
Yau threefolds (the equivalence between the derived categories of X and M induces an isomorphism
between their polarized Hodge structures). In this counterexample, X++ and M would be non-birational,
since we can enumerate all the birational models of X++ and none of them is isomorphic to M . If X++ and
M are isomorphic, this would suggest that there is some deeper phenomenon behind this occurrence, which
is worth investigating. It would also yield a new automorphism of the derived category of X++, which is
interesting to study in view of implications to Kontsevich’s homological mirror symmetry conjecture.

Acknowledgements.I am grateful to Mark Gross for suggesting me to look at elliptic threefolds for counterexam-
ples to Torelli, and to Sorin Popescu, Titus Teodorescu and Eyal Markman for numerous useful discussions.
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