Interpolation orbits in couples of $\boldsymbol{L}_{\boldsymbol{p}}$ spaces

Vladimir I. Ovchinnikov
Voronezh State University, Universitetskaia pl., 1, Voronezh, 394693, Russia
Received 17 December 2001; accepted 28 February 2002
Note presented by Gilles Pisier.

Abstract

We consider linear operators T mapping a couple of weighted L_{p} spaces $\left\{L_{p_{0}}\left(U_{0}\right)\right.$, $\left.L_{p_{1}}\left(U_{1}\right)\right\}$ into $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$ for any $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$, and describe the interpolation orbit of any $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$ that is we describe a space of all $\{T a\}$, where T runs over all linear bounded mappings from $\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}$ into $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$. We show that interpolation orbit is obtained by the Lions-Peetre method of means with functional parameter as well as by the K-method with a weighted Orlicz space as a parameter. To cite this article: V.I. Ovchinnikov, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 881-884. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Orbites d'interpolation pour les couples d'espaces L_{p}

Résumé \quad Nous considérons les opérateurs T partant d'un couple d'espaces L_{p} à poids $\left\{L_{p_{0}}\left(U_{0}\right)\right.$, $\left.L_{p_{1}}\left(U_{1}\right)\right\}$ à valeurs dans $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$, où $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$, et donnons une description de l'orbite d'interpolation de tout élément $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$; autrement dit nous décrivons l'espace de toutes les images $\{T a\}$, où T parcourt l'espace des opérateurs linéaires bornés de $\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}$ dans $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$. Nous montrons que l'orbite d'interpolation est obtenue par la méthode des moyennes de Lions-Peetre avec un paramètre fonctionnel, et aussi par la K-méthode avec un espace d'Orlicz à poids comme paramètre fonctionnel. Pour citer cet article: V.I. Ovchinnikov, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 881-884. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

This paper is devoted to description of interpolation orbits with respect to linear operators mapping an arbitrary couple of L_{p} spaces with weights $\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}$ into an arbitrary couple $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$, where $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$. By $L_{p}(U)$ we denote the space of measurable functions f on a measure space \mathfrak{M} such that $f U \in L_{p}$ with the norm $\|f\|_{L_{p}(U)}=\|f U\|_{L_{p}}$.

Let $\left\{X_{0}, X_{1}\right\}$ and $\left\{Y_{0}, Y_{1}\right\}$ be two Banach couples, $a \in X_{0}+X_{1}$. The space $\operatorname{Orb}\left(a,\left\{X_{0}, X_{1}\right\} \rightarrow\left\{Y_{0}, Y_{1}\right\}\right)$ is a Banach space of $y \in Y_{0}+Y_{1}$ such that $y=T a$, where T is a linear operator mapping the couple $\left\{X_{0}, X_{1}\right\}$ into the couple $\left\{Y_{0}, Y_{1}\right\}$. This space is called an interpolation orbit of the element a.

We are going to describe the spaces $\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)$ for any a, any $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$ and any positive weights $U_{0}, U_{1}, V_{0}, V_{1}$.

Fundamental results on description of these spaces in separate cases are well known since 1965. The key role was played by the J . Peetre K-functional.

[^0]Let $\left\{X_{0}, X_{1}\right\}$ be a Banach couple, $x \in X_{0}+X_{1}, s>0, t>0$. Denote by

$$
K\left(s, t, x ;\left\{X_{0}, X_{1}\right\}\right)=\inf _{x=x_{0}+x_{1}} s\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}}
$$

where infimum is taken over all representations of x as a sum of $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$. The function $K(s, t)$ is concave and is uniquely defined by the function $K\left(1, t, x ;\left\{X_{0}, X_{1}\right\}\right)$ which is also denoted by $K\left(t, x ;\left\{X_{0}, X_{1}\right\}\right)$.

If $1 \leqslant p_{0} \leqslant q_{0} \leqslant \infty, 1 \leqslant p_{1} \leqslant q_{1} \leqslant \infty$, the orbits $\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)$ were described as the generalized Marcinkiewicz spaces, i.e.,

$$
\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)=\left\{y: \sup _{s, t} \frac{K\left(s, t, y ;\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)}{K\left(s, t, a ;\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}\right)}<\infty\right\}
$$

for any $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$. The decisive steps were done by Sparr in [10,11] and Dmitriev in [3]. In particular Sparr showed that if

$$
K\left(s, t, y ;\left\{L_{p_{0}}\left(V_{0}\right), L_{p_{1}}\left(V_{1}\right)\right\}\right) \leqslant C K\left(s, t, a ;\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}\right)
$$

then there exists a linear operator $T:\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{p_{0}}\left(V_{0}\right), L_{p_{1}}\left(V_{1}\right)\right\}$ such that $y=T a$.
Dmitriev in [3] had also found a description of orbits in the case of arbitrary $1 \leqslant p_{0}, p_{1} \leqslant \infty$ and $q_{0}=q_{1}=1$ as well as in the case of arbitrary $1 \leqslant p_{1}, q_{0} \leqslant \infty$ and $p_{0}=q_{1}=1$.

The result we are going to present here goes up to the paper [6] where some optimal interpolation theorems were found. Developing this approach the following hypothesis was formulated in [7]. Roughly speaking it states that the space $\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)$ is situated between $L_{q_{0}}\left(V_{0}\right)$ and $L_{q_{1}}\left(V_{1}\right)$ exactly in the same place as the Calderon-Lozanovskii space $\varphi\left(L_{r_{0}}\left(W_{0}\right), L_{r_{1}}\left(W_{1}\right)\right)$ between $L_{r_{0}}\left(W_{0}\right)$ and $L_{r_{1}}\left(W_{1}\right)$, where $\varphi(s, t)=K\left(s, t, a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}\right)$ and $r_{0}^{-1}=\left(q_{0}^{-1}-p_{0}^{-1}\right)_{+}$, $r_{1}^{-1}=\left(q_{1}^{-1}-p_{1}^{-1}\right)_{+}$. This hypothesis was partially confirmed in [8]. Now we show that hypothesis from [7] is true for any $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$. We also present a slightly modified description of interpolation orbits which resembles Dmitriev's description from [3].

1. The method of means for any quasi-concave functional parameter

Let $\varphi(s, t)$ be interpolation function, that is let $\rho(t)=\varphi(1, t)$ be quasi-concave and $\varphi(s, t)$ be homogeneous of the degree one. Assume that $\varphi \in \Phi_{0}$ which means that $\varphi(1, t) \rightarrow 0$ and $\varphi(t, 1) \rightarrow 0$ as $t \rightarrow 0$. Denote by $\left\{t_{n}\right\}$ the sequence invented by K . Oskolkov and introduced to interpolation by S. Janson. The sequence is constructed by induction $\min \left(\rho\left(t_{n+1}\right) / \rho\left(t_{n}\right), t_{n+1} \rho\left(t_{n}\right) / t_{n} \rho\left(t_{n+1}\right)\right)=q>1$. (For simplicity in the sequel we suppose that $\left\{t_{n}\right\}$ is two-sided.)

The main property of this sequence is the following

$$
\begin{equation*}
K\left(s, t,\left\{\rho\left(t_{n}\right)\right\},\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\}\right) \asymp \varphi(s, t) \tag{1}
\end{equation*}
$$

for any $1 \leqslant p_{0}, p_{1} \leqslant \infty$.
Definition 1.- Let $\left\{X_{0}, X_{1}\right\}$ be any Banach couple, $\rho(t)$ be a quasi-concave function such that $\varphi \in \Phi_{0}$ and $1 \leqslant p_{0}, p_{1} \leqslant \infty$. Denote by $\varphi\left(X_{0}, X_{1}\right)_{p_{0}, p_{1}}$ the space of $x \in X_{0}+X_{1}$ such that

$$
\begin{equation*}
x=\sum_{n \in \mathbb{Z}} \rho\left(t_{n}\right) w_{n} \quad\left(\text { convergence in } X_{0}+X_{1}\right) \tag{2}
\end{equation*}
$$

where $w_{n} \in X_{0} \cap X_{1}$ and $\left\{\left\|w_{n}\right\|_{X_{0}}\right\} \in l_{p_{0}},\left\{t_{n}\left\|w_{n}\right\|_{X_{1}}\right\} \in l_{p_{1}}$.

The norm in $\varphi\left(X_{0}, X_{1}\right)_{p_{0}, p_{1}}$ is naturally defined. In the case of $\varphi(s, t)=s^{1-\theta} t^{\theta}$, where $0<\theta<1$, these spaces were introduced by Lions and Peetre in [5] and were called the spaces of means.
Note that $\varphi\left(X_{0}, X_{1}\right)_{\infty, \infty}$ coincides with the generalized Marcinkiewicz space $M_{\varphi}\left(X_{0}, X_{1}\right)$ as well as with the space $\left(X_{0}, X_{1}\right)_{\rho, \infty}$ (see, for instance, [9]).
Let $\left\{X_{0}, X_{1}\right\}$ be a couple of Banach lattices. Recall that $\varphi\left(X_{0}, X_{1}\right)$ is the space of all elements from $X_{0}+X_{1}$ such that $|x|=\varphi\left(\left|x_{0}\right|,\left|x_{1}\right|\right)$, where $x_{0} \in X_{0}, x_{1} \in X_{1}$.

Lemma 1. - Let $1 \leqslant p_{0}, p_{1} \leqslant \infty$, then $\varphi\left(L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right)=\varphi\left(L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right)_{p_{0}, p_{1}}$.
(Note that if $U_{0}=1$ and $U_{1}=1$, then $\varphi\left(L_{p_{0}}, L_{p_{1}}\right)$ is an Orlicz space.)
Recall that interpolation function φ is called non-degenerate if the ranges of the functions $\varphi(t, 1)$ and $\varphi(1, t)$ where $t>0$ coincide with $(0, \infty)$.

Lemma 2. - If φ is non-degenerate, then for any Banach couple the space $\varphi\left(X_{0}, X_{1}\right)_{p_{0}, p_{1}}$ consists of $x \in X_{0}+X_{1}$ for which $\left\{K\left(u_{m}, x,\left\{X_{0}, X_{1}\right\}\right\} \in \varphi\left(l_{p_{0}}, l_{p_{1}}\left(u_{m}^{-1}\right)\right)\right.$, where $\left\{u_{m}\right\}$ is the Oskolkov-Janson sequence for the function $K\left(t, x,\left\{X_{0}, X_{1}\right\}\right)$.

We omit the proof. Note however that the proof is based on the K-divisibility (see [2]) and Lemma 1 . With the help of K-divisibility for the couple $\left\{l_{p_{0}}, l_{p_{1}}\left(u_{m}^{-1}\right)\right\}$ the expansion (2) of $x \in \varphi\left(X_{0}, X_{1}\right)_{p_{0}, p_{1}}$ in the couple $\left\{X_{0}, X_{1}\right\}$ generates the analogous expansion of the sequence $\left\{K\left(u_{m}, x,\left\{X_{0}, X_{1}\right\}\right\} \in\right.$ $\varphi\left(l_{p_{0}}, l_{p_{1}}\left(u_{m}^{-1}\right)\right)_{p_{0}, p_{1}}=\varphi\left(l_{p_{0}}, l_{p_{1}}\left(u_{m}^{-1}\right)\right)$ in the couple $\left\{l_{p_{0}}, l_{p_{1}}\left(u_{m}^{-1}\right)\right\}$, and vice versa.
Remark. - Note that the spaces $\varphi\left(X_{0}, X_{1}\right)_{p, p}$ coincide with the space $\left(X_{0}, X_{1}\right)_{\rho, p}$ introduced by Janson (see [4]). Lemma 2 gives us a new description of these spaces as well.

2. The main theorem

THEOREM. - Let $\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}$ and $\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$ be two Banach couples, where $1 \leqslant p_{0}$, $p_{1}, q_{0}, q_{1} \leqslant \infty$, and $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$ such that $\varphi(s, t)=K\left(s, t, a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\}\right) \in \Phi_{0}$, then

$$
\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)=\varphi\left(L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right)_{r_{0}, r_{1}},
$$

where $r_{0}^{-1}=\left(q_{0}^{-1}-p_{0}^{-1}\right)_{+}$and $r_{1}^{-1}=\left(q_{1}^{-1}-p_{1}^{-1}\right)_{+}$. (As usual x_{+}denotes the positive part of x.)
The rest cases $\varphi(s, t) \notin \Phi_{0}$ can be easily reduced to $\varphi(s, t) \in \Phi_{0}$ as it was done in [9] where the analogous situation takes place for $p_{0} \leqslant q_{0}$ and $p_{1} \leqslant q_{1}$.

The proof is a combination of the following propositions.
Proposition 1.- For any $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$ and any weights $U_{0}, U_{1}, V_{0}, V_{1}$, and for any $a \in L_{p_{0}}\left(U_{0}\right)+L_{p_{1}}\left(U_{1}\right)$

$$
\operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right) \subset \varphi\left(L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right)_{r_{0}, r_{1}} .
$$

Proof. - Let $b=T a$, where $T:\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}$. Recall that $\rho(t)=\varphi(1, t)$. Denote $a_{\rho}=\left\{\rho\left(t_{n}\right)\right\}, \psi(u)=K\left(u, b,\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)$ and $b_{\psi}=\left\{\psi\left(u_{m}\right)\right\}$, where u_{m} is the OskolkovJanson sequence for $\psi(u)$. The Sparr theorem implies that there exists a linear operator $S:\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\} \rightarrow$ $\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\}$ such that $S a_{\rho}=b_{\psi}$.

We consider the embedding $\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\} \subset\left\{l_{\infty}, l_{\infty}\left(u_{m}^{-1}\right)\right\}$. It is known that the embedding $l_{q_{i}} \subset$ l_{∞} are ($1, q_{i}$)-summing operators (by the Karl-Bennett theorem, see [1]). Hence if $q_{0}<p_{0}$, then the image of the standard basis sequence in $l_{p_{0}}$ with respect to $S: l_{p_{0}} \rightarrow l_{\infty}$ is $l_{r_{0}-\text { sequence, that is }}$ $\left\{\left\|S\left(e_{n}\right)\right\|_{l_{\infty}}\right\} \in l_{r_{0}}$, where $r_{0}^{-1}=q_{0}^{-1}-p_{0}^{-1}$. Analogously $\left\{t_{n}\left\|S\left(e_{n}\right)\right\|_{l_{\infty}\left(u_{m}^{-1}\right)}\right\} \in l_{r_{1}}$, where $r_{1}^{-1}=q_{1}^{-1}-$ p_{1}^{-1}. Hence in any case we have $\left\{\left\|S\left(e_{n}\right)\right\|_{l_{\infty}}\right\} \in l_{r_{0}}$, and $\left\{t_{n}\left\|S\left(e_{n}\right)\right\|_{l_{\infty}\left(u_{m}^{-1}\right)}\right\} \in l_{r_{1}}$, where $r_{0}^{-1}=\left(q_{0}^{-1}-\right.$
$\left.p_{0}^{-1}\right)_{+}$and $r_{1}^{-1}=\left(q_{1}^{-1}-p_{1}^{-1}\right)_{+}$. Therefore by definition $b_{\psi} \in \varphi\left(l_{\infty}, l_{\infty}\left(u_{m}^{-1}\right)\right)_{r_{0}, r_{1}}$. By Lemma 2 this means $\left\{K\left(v_{m}, b_{\psi},\left\{l_{\infty}, l_{\infty}\left(u_{m}^{-1}\right)\right\}\right)\right\} \in \varphi\left(l_{r_{0}}, l_{r_{1}}\left(v_{m}^{-1}\right)\right)$, where $\left\{v_{m}\right\}$ is the Oskolkov-Janson sequence for $K\left(v, b_{\psi},\left\{l_{\infty}, l_{\infty}\left(u_{m}^{-1}\right)\right\}\right) \asymp K\left(v, b_{\psi},\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\}\right)=\psi(v)$. Hence $v_{m}=u_{m}$, and by (1)

$$
K\left(u_{m}, b,\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right) \asymp K\left(u_{m}, b_{\psi},\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\}\right) \asymp K\left(u_{m}, b_{\psi},\left\{l_{\infty}, l_{\infty}\left(u_{m}^{-1}\right)\right\}\right) .
$$

So $\left\{K\left(u_{m}, b,\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)\right\} \in \varphi\left(l_{r_{0}}, l_{r_{1}}\left(u_{m}^{-1}\right)\right)$. By Lemma 2 proposition is proved.
The following propositions are devoted to the inverse inclusion

$$
\varphi\left(L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right)_{r_{0}, r_{1}} \subset \operatorname{Orb}\left(a,\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right\}\right)
$$

For any $b \in \psi\left(L_{q_{0}}\left(V_{0}\right), L_{q_{1}}\left(V_{1}\right)\right)_{r_{0}, r_{1}}$ we must find an operator $T \in\left\{L_{p_{0}}\left(U_{0}\right), L_{p_{1}}\left(U_{1}\right)\right\} \rightarrow\left\{L_{q_{0}}\left(V_{0}\right)\right.$, $\left.L_{q_{1}}\left(V_{1}\right)\right\}$ such that $b=T a$. Again with the help of the Sparr theorem we substitute a by a_{ρ} and b by b_{ψ} as well as initial couples by $\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\}$ and $\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\}$, respectively.
Proposition 2.-Let $\left\{\psi\left(u_{m}\right)\right\} \in \varphi\left(l_{r_{0}}, l_{r_{1}}\left(u_{m}^{-1}\right)\right)$, then there exist sequences $\left\{\beta_{m}^{0}\right\} \in l_{r_{0}}$ and $\left\{\beta_{m}^{1}\right\} \in l_{r_{1}}$ such that $K\left(s, t,\left\{\psi\left(u_{m}\right)\right\},\left\{l_{1}\left(1 / \beta_{m}^{0}\right), l_{1}\left(1 / \beta_{m}^{1} u_{m}\right)\right\}\right) \leqslant C \varphi(s, t)$.

PROPOSITION 3.-Let $b_{\psi}=\left\{\psi\left(u_{m}\right)\right\} \in \varphi\left(l_{r_{0}}, l_{r_{1}}\left(u_{m}^{-1}\right)\right)$, then $b_{\psi}=S\left(a_{\rho}\right)$ for some linear operator $S:\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\} \rightarrow\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\}$.
Proof. - Without loss of generality we assume that $p_{0} \geqslant q_{0}, p_{1} \geqslant q_{1}$. By Proposition 2 we can find $\beta^{0} \in l_{r_{0}}$ and $\beta^{1} \in l_{r_{1}}$. Consider the embedding

$$
\begin{equation*}
\left\{l_{1}\left(1 / \beta_{m}^{0}\right), l_{1}\left(1 / \beta_{m}^{1} u_{m}\right)\right\} \subset\left\{l_{p_{0}}\left(1 / \beta_{m}^{0}\right), l_{p_{1}}\left(1 / \beta_{m}^{1} u_{m}\right)\right\} \subset\left\{l_{q_{0}}, l_{q_{1}}\left(u_{m}^{-1}\right)\right\} \tag{3}
\end{equation*}
$$

and the element b_{ψ}. By Proposition 2 we have $K\left(s, t, b_{\psi},\left\{l_{p_{0}}\left(1 / \beta_{m}^{0}\right), l_{p_{1}}\left(1 / \beta_{m}^{1} u_{m}\right)\right\}\right) \leqslant C \varphi(s, t)$. Since $\varphi(s, t) \asymp K\left(s, t, a_{\rho},\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\}\right)$, by the Sparr theorem there exists an operator $S:\left\{l_{p_{0}}, l_{p_{1}}\left(t_{n}^{-1}\right)\right\} \rightarrow$ $\left\{l_{p_{0}}\left(1 / \beta_{m}^{0}\right), l_{p_{1}}\left(1 / \beta_{m}^{1} u_{m}\right)\right\}$ mapping a_{ρ} into b_{ψ}.
The composition of S and the right-hand side embedding in (3) is the desired mapping. Thus proposition and theorem are proved.

Acknowledgements. The author is grateful to M.Mastylo for fruitful discussions.

References

[1] G. Bennett, Inclusion mappings between l_{p} spaces, J. Funct. Anal. 13 (1973) 20-27.
[2] Ju.A. Brudnyi, N.Ya. Krugliak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991.
[3] V.I. Dmitriev, On interpolation of operators in L_{p} spaces, Dokl. Akad. Nauk SSSR 260 (1981) 1051-1054.
[4] S. Janson, Minimal and maximal methods in interpolation, J. Funct. Anal. 44 (1981) 50-73.
[5] J.-L. Lions, J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68.
[6] V.I. Ovchinnikov, An exact interpolation theorem in L_{p} spaces, Dokl. Akad. Nauk SSSR 272 (1983) 300-303.
[7] V.I. Ovchinnikov, Description of orbits, Israel Math. Conf. Proc. 5 (1992) 291-292.
[8] V.I. Ovchinnikov, On the description of interpolation orbits in couples of L_{p} spaces, when they are not described by the K-method, Israel Math. Conf. Proc. 5 (1992) 187-206.
[9] V.I. Ovchinnikov, The method of orbits in interpolation theory, Math. Reports 1 (2) (1984) 349-516.
[10] G. Sparr, Interpolation des espaces L_{w}^{p}, C. R. Acad. Sci. Paris, Serie A-B 278 (1974) 491-492.
[11] G. Sparr, Interpolation of weighted L_{p} spaces, Studia Math. 62 (1978) 229-271.

[^0]: E-mail address: vio@func.vsu.ru (V.I. Ovchinnikov).

