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Abstract We shall give concrete estimations for the Gromov symplectic width of toric manifolds in
combinatorial data. As by-products some combinatorial inequalities in the polytope theory
are obtained.To cite this article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 889–892.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Capacités symplectiques de variétés toriques et inéqualités
combinatoires

Résumé On obtient des estimations concrètes pour le largeur symplectique de Gromov pour
les variétés toriques par ses données combinatoires. Comme un sous-produit, quelques
inéqualités combinatoires dans la théorie de polytope sont obtenus.Pour citer cet
article : G. Lu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 889–892.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

The toric manifolds are a very beautiful family of Kähler manifolds. Since they admit a combinatorial
description it is very interesting to estimate their (pseudo) symplectic capacities in terms of combinatoral
data. Recall that the Gromov symplectic widthWG(M,ω) of a 2n-dimensional symplectic manifold
(M,ω) is defined by the supremum of all numbersπr2 for which there exists a symplectic embedding
from a ballB2n(r) in (R2n,ω0) of radiusr into (M,ω). It is the first symplectic capacity. Recently, the
author introduced the notion ofpseudo symplectic capacity [6]. Let us begin by briefly recalling it. For
its properties and applications the reader refer to [6]. Given a connected symplectic manifold(M,ω) of
dimension 2n and a smooth functionH on it let XH denote the symplectic gradient ofH . An isolated
critical pointp of H is calledadmissable if the spectrum of the linear transformationDXH(p) : TpM →
TpM is contained inC\ {λi | 2π �±λ <+∞}. For two given nonzero homology classesα0, α∞ ∈H∗(M)

we denote byHad(M,ω;α0, α∞) (resp.Ĥad(M,ω;α0, α∞)) the set of all smooth functions onM for
which there exist two smooth compact submanifoldsP andQ of M with connected smooth boundaries
and of codimension zero such that the following condition groups (a)–(f) (resp. (a)–(e), (g)) are satisfied:
(a) P ⊂ Int(Q) andQ⊂ Int(M);
(b) H |P = 0 andH |M−Int(Q) =maxH ;
(c) 0� H � maxH ;
(d) There exist chain representatives ofα0 andα∞, still denoted byα0, α∞, such that supp(α0)⊂ Int(P )

and supp(α∞)⊂M \Q;
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(e) H has only finitely many critical points in Int(Q) \ P and each of them is admissible in the above
sense;

(f) The Hamiltonian systeṁx =XH(x) onM has no nonconstant periodic solutions of period less than 1;
(g) The Hamiltonian systeṁx = XH(x) onM has no nonconstant contractible periodic solutions of pe-

riod less than 1.
If α0 ∈H0(M) can be represented by a point we allowP to be an empty set. IfM is a closed manifold and
α∞ ∈H0(M) is represented by a point, we also allowQ=M.

The pseudo symplectic capacities of Hofer–Zehnder type are defined by{
C

(2)
HZ(M,ω;α0, α∞) := sup{maxH |H ∈Had(M,ω;α0, α∞)},

Ĉ
(2)
HZ(M,ω;α0, α∞) := sup{maxH |H ∈ Ĥad(M,ω;α0, α∞)}.

(1)

In this Note we denote bypt the generator ofH0(M) represented by a point, and always make the
convention that sup∅ = 0 and inf∅ =+∞.

1. The pseudo symplectic capacity of toric manifolds

For the following related knowedge on the toric manifolds the reader may refer to [1,2,5]. Let� be a
complete regular fan inRn andG(�)= {u1, . . . , ud} the set of all generators of 1-dimensional cones in�.
Denote by P� the toric manifold associated with�. It is well known that every Kähler form on P� can be
represented by a strictly convex support functionϕ for � and that every strictly convex support function
for � represents a Kähler form on P� . Therefore, in this Note we shall use the same letter to denote a
Kähler form on P� and the corresponding strictly convex support function for� when the context makes
our meaning clear. In the following we denote byZ�0 the set of all nonnegative integers.

THEOREM 1. –Under the assumptions above let ω be a strictly convex support function for �. Then it
holds that

ϒ(�,ω) := 1

2π
inf

{
d∑

k=1

ω(uk)ak > 0

∣∣∣∣ d∑
k=1

akuk = 0, ak ∈ Z�0, k = 1, . . . , d

}
> 0, (2)

and that for every n � 2,

WG(P�,ω) � CHZ

(
P�,ω;pt,PD

([ω])) � 2π ·ϒ(�,ω). (3)

In particular, let us consider a Delzant polytope in(Rn)∗

�=
d⋂

k=1

{
x ∈ (

Rn
)∗ ∣∣ lk(x) := x(uk)− λk � 0

}
(4)

(cf. [1,5]), whered is the number of the(n− 1)-dimensional faces of�, uk is a uniquely primitive element
of the latticeZn ⊂Rn (the inward-pointing normal to thek-th face of�), andλk is a real number. Denote
byX� the toric manifold associated with the fan generated by�, and byω� the canonical symplectic form
on it.

THEOREM 2. –Under the assumptions above, it holds that

ϒ(�) := inf

{
−

d∑
k=1

λkak > 0

∣∣∣∣ d∑
k=1

akuk = 0, ak ∈ Z�0, k = 1, . . . , d

}
> 0, (5)

and that for any n � 2,

WG(X�,ω�) � CHZ

(
X�,ω�;pt,PD

([ω�])) � 2π ·ϒ(�). (6)

Moreover, if Vert(�) denotes the set of all vertexes of � and Ep(�) is the shortest distance from the vertex
p to the adjacent n vertexes, then for any capacity function c,

2π · max
p∈Vert(�)

Ep(�) � c(X�,ω�). (7)
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Remark 3. – For then-simplex�=�n in (Rn)∗ spanned by the origin and the dual basise∗1, . . . , e∗n the
associated toric manifold(X�n ,ω�n ) is (CPn,2ωFS) with

∫
CP

1 ωFS = π . It is easily seen thatϒ(�n)= 1.
Thus the estimates in (6) are optimal. In particular, it follows from the proof of Theorem 2 that

WG

(�n(1)×✷n(2π),ω0
)
� WG

(�n(1)×Tn,ωcan
)
� 2π,

where�n(a) = {(x1, . . . , xn) ∈ Rn
>0 |

∑n
k=1xk < a} ⊂ Rn and ✷n(a)= {(θ1, . . . , θn) ∈Rn | 0< θk < a,

∀1 � k � n} for anya > 0. But from Theorem 5.1 in [10] one can only getWG

(�n(1)×✷n(2π),ω0
)

�
8nπ .

Examples. – (i) Let e1, e2, e3 be the standard basis ofR3 andu1 = e1, u2 = −e1, u3 = e2, u4 = e3,
u5 = −e2 − e3 − 2e1. Consider a fan� ⊂ R3 in which G(�) = {u1, u2, u3, u4, u5} is the set of all
generators of 1-dimensional cones and whose set of primitive collections is{{u1, u2}, {u3, u4, u5}}. It is
easily checked that this fan is complete and regular. Its associated toric manifold P� is the Fano threefold
P(OP2(2)⊕ 1). Note that each strictly convex support function for� can be determined by its values at
pointsui , i = 1, . . . ,5. Letω be a�-piecewise linear function such thatω(ui)= 1, i = 1, . . . ,5. It is easy
to prove that it is a strictly convex support function for� and thatϒ(�,ω)= 1/π . Thus by Theorem 1 we
getWG(P�,ω) �CHZ(P�,ω;pt,PD([ω])) � 2.

(ii) Consider a Delzant polytope�⊂ (R3)∗ with verticesv0= 0,v1 = e∗1, v2= e∗2, v3 = (1−a)e∗2+ae∗3,
v4= ae∗3, v5 = (1−a)e∗1+ae∗3. Here 0< a < 1 ande∗1, e∗2, e∗3 are the dual basis of the standard basise1, e2,
e3 in R3. It is easy to see that the normal vectors to the 2-dimensional faces areu1= e∗1, u2= e∗2, u3= e∗3,
u4 = −e∗3, u5 = −e∗1 − e∗2 − e∗3. Furthermore,� can be expressed as the intersection of the half spaces
〈x,uj 〉 � 0, j = 1,2,3, and〈x,u4〉 �−a, 〈x,u5〉 �−1. Thusϒ(�) = a and it follows from Theorem 2
that the associated toric manifold(X�,ω�) has the capacities

WG(X�,ω�) � CHZ

(
X�,ω�;pt,PD

([ω�])) � 2πa.

Notice that the toric manifold(X�,ω�) is exactly the blow-up of(CP3,2ωFS) of weight 2(1− a) at a
point. That is, it is obtained by removing the interior of a symplectic embedding ball(B6(

√
2(1− a)),ω0)

of radius
√

2(1− a) in (CP3,2ωFS) and collapsing the bounding sphere to the exceptional divisor by the
Hopf map.

2. Seshadri constants

For a compact complex manifold(M,J ) of dimensionn, and an ample line bundleL→M Demailly
[4] defined theSeshadri constant of L at a pointx ∈M to be the nonnegative real number

ε(L,x) := inf
C�x

∫
C
c1(L)

multxC
, (8)

where the infimum is taken over all irreducible curves passing through the pointx, and multxC is the
multiplicity of C atx. The global Seshadri constant is defined by

ε(L) := inf
x∈M ε(L,x). (9)

For more details the reader should refer to [4,3] and the references therein.
Let the toric manifold P� be as in Theorem 1 andLk = Lk(�)→ P� the corresponding line bundles

to the standard toric divisorsDk(�), k = 1, . . . , d . It is well known that the Chern classc1(Lk) is
Poincaré dual to[Dk] ∈ H2(P�,Z) for eachk. For m = (m1, . . . ,md) ∈ Zd consider the line bundle
L= L

m1
1 ⊗· · ·⊗L

md

d . By the toric manifold theory it is ample if and only if the�-piecewise linear function
ϕL = ϕ(m1···md)) ∈ PL(�) determined byϕL(uk)=mk , k = 1, . . . , d , is a strictly convex support function.

THEOREM 4. –Let P� be the toric manifold associated with a complete regular fan � in Rn and
L→ P� an ample line bundle on it. If ϕL be any strictly convex support function in PL(�) representing
the class c1(L) then

ε(L) � 2π ·ϒ(�,ϕL). (10)
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Furthermore, if m= (m1, . . . ,md) ∈ Zd is such that the �-piecewise linear function ϕ(m1···md) in (10) is a
strictly convex support function, then

ε
(
L
m1
1 ⊗ · · · ⊗L

md

d

)
� inf

{
d∑

k=1

mkak > 0

∣∣∣∣ d∑
k=1

akuk = 0, ak ∈ Z�0, k = 1, . . . , d

}
.

3. The strategies of proof of the main results

We only outline the proof of Theorem 1. For a closed symplectic manifold(M,ω), by Proposition 1.8,
Theorem 1.12 and Remark 1.13 in [6] we know that if there exist homology classesA ∈H2(M,Z) andαi ∈
H∗(M,Q), i = 1, . . . ,m, such that the Gromov–Witten invariant2

(M,ω)
A,0,m+1(pt;pt,α1, . . . , αm) �= 0 then

WG(M,ω) � CHZ(M,ω;pt,PD([ω])) � ω(A). Since suchA has always the representives of rational
curves it follows from the Gromov compactness theorem that the infimum GW0(M,ω;pt,PD([ω])) of
all ω(A) whenA taking over such classes is more than zero. If GW0(M,ω;pt,PD([ω])) is finite the
symplectic manifold(M,ω) is called strong 0-symplectic uniruled in Definition 1.16 of [6]. Batyrev’s
compuation for the quantum cohomology rings of toric manifolds [2] (cf. [8] for a rigorous explanation)
showed that the toric manifolds are strong 0-symplectic uniruled. Precisely, under the assumptions of
Theorem 1 let us denote byR(�)= {µ= (µ1, . . . ,µd) ∈ Zd |µ1u1+· · ·+µdud = 0} andDk(�) the toric
divisors of P� , k = 1, . . . , d . ForA ∈H2(P�,Z) letµk(A) denote the intersection numbersA ·Dk(�), k =
1, . . . , d . Then(µ1(A), . . . ,µd(A)) ∈ R(�) and the mapH2(P�,Z)→ R(�),A �→ (µ1(A), . . . ,µd(A))

is an isomorphism. Denote by5� the inverse map of the isomorphism. It was proved in [2] that for
everyA = 5�(a) ∈ 5�(Zd

�0 ∩ R(�)) ⊂ H2(P�,Z) and any Kähler formω on P� the Gromov–Witten

invariant2(P�,ω)
A,0,m+1(pt;pt,PD(c

a1
1 ), . . . ,PD(c

ad
d )) = 1, wherem = 1+ ∑d

k=1ak and ck ∈ H 2(P�,Z)

are the Poincare dual of[Dk(�)], k = 1, . . . , d . On the other hand each Kähler formω on P� may be
represented by a strictly convex support function for�, also denoted byω. By the arguments in §3 of [2]
we haveω(A)= 〈[ω],A〉 =∑d

k=1ω(uk)ak. Now Theorem 1 may be derived from these arguments.
Theorem 2 may be derived from Theorem 1, the main result in [9] and Lemma 3.11 in [7]. The proof of

Theorem 4 may be completed by using Proposition 6.3 in [3] and Theorem 1.39 in [6].
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