Symplectic capacities of toric manifolds and combinatorial inequalities

Guangcun Lu ${ }^{1}$
Department of Mathematics, Beijing Normal University, Beijing 100875, PR China

Received 6 November 2001; accepted after revision 7 March 2002
Note presented by Jean-Pierre Demailly.

Abstract

We shall give concrete estimations for the Gromov symplectic width of toric manifolds in combinatorial data. As by-products some combinatorial inequalities in the polytope theory are obtained. To cite this article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 889-892. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

\section*{Capacités symplectiques de variétés toriques et inéqualités combinatoires}

Résumé On obtient des estimations concrètes pour le largeur symplectique de Gromov pour les variétés toriques par ses données combinatoires. Comme un sous-produit, quelques inéqualités combinatoires dans la théorie de polytope sont obtenus. Pour citer cet article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 889-892. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

The toric manifolds are a very beautiful family of Kähler manifolds. Since they admit a combinatorial description it is very interesting to estimate their (pseudo) symplectic capacities in terms of combinatoral data. Recall that the Gromov symplectic width $\mathcal{W}_{G}(M, \omega)$ of a $2 n$-dimensional symplectic manifold (M, ω) is defined by the supremum of all numbers πr^{2} for which there exists a symplectic embedding from a ball $B^{2 n}(r)$ in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ of radius r into (M, ω). It is the first symplectic capacity. Recently, the author introduced the notion of pseudo symplectic capacity [6]. Let us begin by briefly recalling it. For its properties and applications the reader refer to [6]. Given a connected symplectic manifold (M, ω) of dimension $2 n$ and a smooth function H on it let X_{H} denote the symplectic gradient of H. An isolated critical point p of H is called admissable if the spectrum of the linear transformation $D X_{H}(p): T_{p} M \rightarrow$ $T_{p} M$ is contained in $\mathbb{C} \backslash\{\lambda i \mid 2 \pi \leqslant \pm \lambda<+\infty\}$. For two given nonzero homology classes $\alpha_{0}, \alpha_{\infty} \in H_{*}(M)$ we denote by $\mathcal{H}_{a d}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right)$ (resp. $\widehat{\mathcal{H}}_{\mathrm{ad}}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right)$) the set of all smooth functions on M for which there exist two smooth compact submanifolds P and Q of M with connected smooth boundaries and of codimension zero such that the following condition groups (a)-(f) (resp. (a)-(e), (g)) are satisfied:
(a) $P \subset \operatorname{Int}(Q)$ and $Q \subset \operatorname{Int}(M)$;
(b) $\left.H\right|_{P}=0$ and $\left.H\right|_{M-\operatorname{Int}(Q)}=\max H$;
(c) $0 \leqslant H \leqslant \max H$;
(d) There exist chain representatives of α_{0} and α_{∞}, still denoted by $\alpha_{0}, \alpha_{\infty}$, such that $\operatorname{supp}\left(\alpha_{0}\right) \subset \operatorname{Int}(P)$ and $\operatorname{supp}\left(\alpha_{\infty}\right) \subset M \backslash Q$;
(e) H has only finitely many critical points in $\operatorname{Int}(Q) \backslash P$ and each of them is admissible in the above sense;
(f) The Hamiltonian system $\dot{x}=X_{H}(x)$ on M has no nonconstant periodic solutions of period less than 1 ;
(g) The Hamiltonian system $\dot{x}=X_{H}(x)$ on M has no nonconstant contractible periodic solutions of period less than 1.
If $\alpha_{0} \in H_{0}(M)$ can be represented by a point we allow P to be an empty set. If M is a closed manifold and $\alpha_{\infty} \in H_{0}(M)$ is represented by a point, we also allow $Q=M$.

The pseudo symplectic capacities of Hofer-Zehnder type are defined by

$$
\left\{\begin{array}{l}
C_{H Z}^{(2)}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right):=\sup \left\{\max H \mid H \in \mathcal{H}_{a d}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right)\right\} \tag{1}\\
\widehat{C}_{H Z}^{(2)}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right):=\sup \left\{\max H \mid H \in \widehat{\mathcal{H}}_{\mathrm{ad}}\left(M, \omega ; \alpha_{0}, \alpha_{\infty}\right)\right\}
\end{array}\right.
$$

In this Note we denote by $p t$ the generator of $H_{0}(M)$ represented by a point, and always make the convention that $\sup \emptyset=0$ and $\inf \emptyset=+\infty$.

1. The pseudo symplectic capacity of toric manifolds

For the following related knowedge on the toric manifolds the reader may refer to [1,2,5]. Let Σ be a complete regular fan in \mathbb{R}^{n} and $G(\Sigma)=\left\{u_{1}, \ldots, u_{d}\right\}$ the set of all generators of 1-dimensional cones in Σ. Denote by P_{Σ} the toric manifold associated with Σ. It is well known that every Kähler form on P_{Σ} can be represented by a strictly convex support function φ for Σ and that every strictly convex support function for Σ represents a Kähler form on P_{Σ}. Therefore, in this Note we shall use the same letter to denote a Kähler form on P_{Σ} and the corresponding strictly convex support function for Σ when the context makes our meaning clear. In the following we denote by $\mathbb{Z}_{\geqslant 0}$ the set of all nonnegative integers.

THEOREM 1. - Under the assumptions above let ω be a strictly convex support function for Σ. Then it holds that

$$
\begin{equation*}
\Upsilon(\Sigma, \omega):=\frac{1}{2 \pi} \inf \left\{\sum_{k=1}^{d} \omega\left(u_{k}\right) a_{k}>0 \mid \sum_{k=1}^{d} a_{k} u_{k}=0, a_{k} \in \mathbb{Z}_{\geqslant 0}, k=1, \ldots, d\right\}>0 \tag{2}
\end{equation*}
$$

and that for every $n \geqslant 2$,

$$
\begin{equation*}
\mathcal{W}_{G}\left(\mathrm{P}_{\Sigma}, \omega\right) \leqslant C_{H Z}\left(\mathrm{P}_{\Sigma}, \omega ; p t, P D([\omega])\right) \leqslant 2 \pi \cdot \Upsilon(\Sigma, \omega) \tag{3}
\end{equation*}
$$

In particular, let us consider a Delzant polytope in $\left(\mathbb{R}^{n}\right)^{*}$

$$
\begin{equation*}
\Delta=\bigcap_{k=1}^{d}\left\{x \in\left(\mathbb{R}^{n}\right)^{*} \mid l_{k}(x):=x\left(u_{k}\right)-\lambda_{k} \geqslant 0\right\} \tag{4}
\end{equation*}
$$

(cf. [1,5]), where d is the number of the $(n-1)$-dimensional faces of Δ, u_{k} is a uniquely primitive element of the lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ (the inward-pointing normal to the k-th face of Δ), and λ_{k} is a real number. Denote by X_{Δ} the toric manifold associated with the fan generated by Δ, and by ω_{Δ} the canonical symplectic form on it.

THEOREM 2. - Under the assumptions above, it holds that

$$
\begin{equation*}
\Upsilon(\triangle):=\inf \left\{-\sum_{k=1}^{d} \lambda_{k} a_{k}>0 \mid \sum_{k=1}^{d} a_{k} u_{k}=0, a_{k} \in \mathbb{Z}_{\geqslant 0}, k=1, \ldots, d\right\}>0 \tag{5}
\end{equation*}
$$

and that for any $n \geqslant 2$,

$$
\begin{equation*}
\mathcal{W}_{G}\left(X_{\Delta}, \omega_{\Delta}\right) \leqslant C_{H Z}\left(X_{\Delta}, \omega_{\Delta} ; p t, P D\left(\left[\omega_{\Delta}\right]\right)\right) \leqslant 2 \pi \cdot \Upsilon(\triangle) \tag{6}
\end{equation*}
$$

Moreover, if $\operatorname{Vert}(\triangle)$ denotes the set of all vertexes of \triangle and $E_{p}(\triangle)$ is the shortest distance from the vertex p to the adjacent n vertexes, then for any capacity function c,

$$
\begin{equation*}
2 \pi \cdot \max _{p \in \operatorname{Vert}(\Delta)} E_{p}(\Delta) \leqslant c\left(X_{\Delta}, \omega_{\Delta}\right) \tag{7}
\end{equation*}
$$

Remark 3. - For the n-simplex $\Delta=\triangle_{n}$ in $\left(\mathbb{R}^{n}\right)^{*}$ spanned by the origin and the dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$ the associated toric manifold $\left(X_{\Delta_{n}}, \omega_{\triangle_{n}}\right)$ is $\left(\mathbb{C P}^{n}, 2 \omega_{F S}\right)$ with $\int_{\mathbb{C P}^{1}} \omega_{F S}=\pi$. It is easily seen that $\Upsilon\left(\Delta_{n}\right)=1$. Thus the estimates in (6) are optimal. In particular, it follows from the proof of Theorem 2 that

$$
\mathcal{W}_{G}\left(\Delta^{n}(1) \times \square^{n}(2 \pi), \omega_{0}\right) \leqslant \mathcal{W}_{G}\left(\Delta^{n}(1) \times \mathbb{T}^{n}, \omega_{\text {can }}\right) \leqslant 2 \pi
$$

where $\Delta^{n}(a)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{>0}^{n} \mid \sum_{k=1}^{n} x_{k}<a\right\} \subset \mathbb{R}^{n}$ and $\square^{n}(a)=\left\{\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n} \mid 0<\theta_{k}<a\right.$, $\forall 1 \leqslant k \leqslant n\}$ for any $a>0$. But from Theorem 5.1 in [10] one can only get $\mathcal{W}_{G}\left(\Delta^{n}(1) \times \square^{n}(2 \pi), \omega_{0}\right) \leqslant$ $8 n \pi$.

Examples. - (i) Let e_{1}, e_{2}, e_{3} be the standard basis of \mathbb{R}^{3} and $u_{1}=e_{1}, u_{2}=-e_{1}, u_{3}=e_{2}, u_{4}=e_{3}$, $u_{5}=-e_{2}-e_{3}-2 e_{1}$. Consider a fan $\Sigma \subset \mathbb{R}^{3}$ in which $G(\Sigma)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is the set of all generators of 1 -dimensional cones and whose set of primitive collections is $\left\{\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}, u_{5}\right\}\right\}$. It is easily checked that this fan is complete and regular. Its associated toric manifold P_{Σ} is the Fano threefold $\mathbf{P}\left(\mathcal{O}_{\mathbf{P}^{2}}(2) \oplus 1\right)$. Note that each strictly convex support function for Σ can be determined by its values at points $u_{i}, i=1, \ldots, 5$. Let ω be a Σ-piecewise linear function such that $\omega\left(u_{i}\right)=1, i=1, \ldots, 5$. It is easy to prove that it is a strictly convex support function for Σ and that $\Upsilon(\Sigma, \omega)=1 / \pi$. Thus by Theorem 1 we get $\mathcal{W}_{G}\left(\mathrm{P}_{\Sigma}, \omega\right) \leqslant C_{H Z}\left(\mathrm{P}_{\Sigma}, \omega ; p t, P D([\omega])\right) \leqslant 2$.
(ii) Consider a Delzant polytope $\triangle \subset\left(\mathbb{R}^{3}\right)^{*}$ with vertices $v_{0}=0, v_{1}=e_{1}^{*}, v_{2}=e_{2}^{*}, v_{3}=(1-a) e_{2}^{*}+a e_{3}^{*}$, $v_{4}=a e_{3}^{*}, v_{5}=(1-a) e_{1}^{*}+a e_{3}^{*}$. Here $0<a<1$ and $e_{1}^{*}, e_{2}^{*}, e_{3}^{*}$ are the dual basis of the standard basis e_{1}, e_{2}, e_{3} in \mathbb{R}^{3}. It is easy to see that the normal vectors to the 2-dimensional faces are $u_{1}=e_{1}^{*}, u_{2}=e_{2}^{*}, u_{3}=e_{3}^{*}$, $u_{4}=-e_{3}^{*}, u_{5}=-e_{1}^{*}-e_{2}^{*}-e_{3}^{*}$. Furthermore, Δ can be expressed as the intersection of the half spaces $\left\langle x, u_{j}\right\rangle \geqslant 0, j=1,2,3$, and $\left\langle x, u_{4}\right\rangle \geqslant-a,\left\langle x, u_{5}\right\rangle \geqslant-1$. Thus $\Upsilon(\triangle)=a$ and it follows from Theorem 2 that the associated toric manifold $\left(X_{\Delta}, \omega_{\Delta}\right)$ has the capacities

$$
\mathcal{W}_{G}\left(X_{\Delta}, \omega_{\Delta}\right) \leqslant C_{H Z}\left(X_{\Delta}, \omega_{\Delta} ; p t, P D\left(\left[\omega_{\Delta}\right]\right)\right) \leqslant 2 \pi a
$$

Notice that the toric manifold $\left(X_{\Delta}, \omega_{\triangle}\right)$ is exactly the blow-up of $\left(\mathbb{C P}^{3}, 2 \omega_{F S}\right)$ of weight $2(1-a)$ at a point. That is, it is obtained by removing the interior of a symplectic embedding ball $\left(B^{6}(\sqrt{2(1-a)}), \omega_{0}\right)$ of radius $\sqrt{2(1-a)}$ in $\left(\mathbb{C P}^{3}, 2 \omega_{F S}\right)$ and collapsing the bounding sphere to the exceptional divisor by the Hopf map.

2. Seshadri constants

For a compact complex manifold (M, J) of dimension n, and an ample line bundle $L \rightarrow M$ Demailly [4] defined the Seshadri constant of L at a point $x \in M$ to be the nonnegative real number

$$
\begin{equation*}
\varepsilon(L, x):=\inf _{C \ni x} \frac{\int_{C} c_{1}(L)}{\operatorname{mult}_{x} C}, \tag{8}
\end{equation*}
$$

where the infimum is taken over all irreducible curves passing through the point x, and $\operatorname{mult}_{x} C$ is the multiplicity of C at x. The global Seshadri constant is defined by

$$
\begin{equation*}
\varepsilon(L):=\inf _{x \in M} \varepsilon(L, x) \tag{9}
\end{equation*}
$$

For more details the reader should refer to $[4,3]$ and the references therein.
Let the toric manifold P_{Σ} be as in Theorem 1 and $L_{k}=L_{k}(\Sigma) \rightarrow \mathrm{P}_{\Sigma}$ the corresponding line bundles to the standard toric divisors $D_{k}(\Sigma), k=1, \ldots, d$. It is well known that the Chern class $c_{1}\left(L_{k}\right)$ is Poincaré dual to $\left[D_{k}\right] \in H_{2}\left(\mathrm{P}_{\Sigma}, \mathbb{Z}\right)$ for each k. For $m=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}$ consider the line bundle $L=L_{1}^{m_{1}} \otimes \cdots \otimes L_{d}^{m_{d}}$. By the toric manifold theory it is ample if and only if the Σ-piecewise linear function $\left.\varphi_{L}=\varphi_{\left(m_{1} \cdots m_{d}\right)}\right) \in \operatorname{PL}(\Sigma)$ determined by $\varphi_{L}\left(u_{k}\right)=m_{k}, k=1, \ldots, d$, is a strictly convex support function.

THEOREM 4. - Let P_{Σ} be the toric manifold associated with a complete regular fan Σ in \mathbb{R}^{n} and $L \rightarrow \mathrm{P}_{\Sigma}$ an ample line bundle on it. If φ_{L} be any strictly convex support function in $\operatorname{PL}(\Sigma)$ representing the class $c_{1}(L)$ then

$$
\begin{equation*}
\varepsilon(L) \leqslant 2 \pi \cdot \Upsilon\left(\Sigma, \varphi_{L}\right) \tag{10}
\end{equation*}
$$

Furthermore, if $m=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}$ is such that the Σ-piecewise linear function $\varphi_{\left(m_{1} \cdots m_{d}\right)}$ in (10) is a strictly convex support function, then

$$
\varepsilon\left(L_{1}^{m_{1}} \otimes \cdots \otimes L_{d}^{m_{d}}\right) \leqslant \inf \left\{\sum_{k=1}^{d} m_{k} a_{k}>0 \mid \sum_{k=1}^{d} a_{k} u_{k}=0, a_{k} \in \mathbb{Z}_{\geqslant 0}, k=1, \ldots, d\right\}
$$

3. The strategies of proof of the main results

We only outline the proof of Theorem 1. For a closed symplectic manifold (M, ω), by Proposition 1.8, Theorem 1.12 and Remark 1.13 in [6] we know that if there exist homology classes $A \in H_{2}(M, \mathbb{Z})$ and $\alpha_{i} \in$ $H_{*}(M, \mathbb{Q}), i=1, \ldots, m$, such that the Gromov-Witten invariant $\Psi_{A, 0, m+1}^{(M, \omega)}\left(p t ; p t, \alpha_{1}, \ldots, \alpha_{m}\right) \neq 0$ then $\mathcal{W}_{G}(M, \omega) \leqslant C_{H Z}(M, \omega ; p t, P D([\omega])) \leqslant \omega(A)$. Since such A has always the representives of rational curves it follows from the Gromov compactness theorem that the infimum $\mathrm{GW}_{0}(M, \omega ; p t, P D([\omega]))$ of all $\omega(A)$ when A taking over such classes is more than zero. If $\operatorname{GW}_{0}(M, \omega ; p t, P D([\omega]))$ is finite the symplectic manifold (M, ω) is called strong 0 -symplectic uniruled in Definition 1.16 of [6]. Batyrev's compuation for the quantum cohomology rings of toric manifolds [2] (cf. [8] for a rigorous explanation) showed that the toric manifolds are strong 0 -symplectic uniruled. Precisely, under the assumptions of Theorem 1 let us denote by $R(\Sigma)=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \in \mathbb{Z}^{d} \mid \mu_{1} u_{1}+\cdots+\mu_{d} u_{d}=0\right\}$ and $D_{k}(\Sigma)$ the toric divisors of $\mathrm{P}_{\Sigma}, k=1, \ldots, d$. For $A \in H_{2}\left(\mathrm{P}_{\Sigma}, \mathbb{Z}\right)$ let $\mu_{k}(A)$ denote the intersection numbers $A \cdot D_{k}(\Sigma), k=$ $1, \ldots, d$. Then $\left(\mu_{1}(A), \ldots, \mu_{d}(A)\right) \in R(\Sigma)$ and the map $H_{2}\left(\mathrm{P}_{\Sigma}, \mathbb{Z}\right) \rightarrow R(\Sigma), A \mapsto\left(\mu_{1}(A), \ldots, \mu_{d}(A)\right)$ is an isomorphism. Denote by Ξ_{Σ} the inverse map of the isomorphism. It was proved in [2] that for every $A=\Xi_{\Sigma}(a) \in \Xi_{\Sigma}\left(\mathbb{Z}_{\geqslant 0}^{d} \cap R(\Sigma)\right) \subset H_{2}\left(\mathrm{P}_{\Sigma}, \mathbb{Z}\right)$ and any Kähler form ω on P_{Σ} the Gromov-Witten invariant $\Psi_{A, 0, m+1}^{\left(\mathrm{P}_{\Sigma}, \omega\right)}\left(p t ; p t, P D\left(c_{1}^{a_{1}}\right), \ldots, P D\left(c_{d}^{a_{d}}\right)\right)=1$, where $m=1+\sum_{k=1}^{d} a_{k}$ and $c_{k} \in H^{2}\left(\mathrm{P}_{\Sigma}, \mathbb{Z}\right)$ are the Poincare dual of $\left[D_{k}(\Sigma)\right], k=1, \ldots, d$. On the other hand each Kähler form ω on P_{Σ} may be represented by a strictly convex support function for Σ, also denoted by ω. By the arguments in $\S 3$ of [2] we have $\omega(A)=\langle[\omega], A\rangle=\sum_{k=1}^{d} \omega\left(u_{k}\right) a_{k}$. Now Theorem 1 may be derived from these arguments.

Theorem 2 may be derived from Theorem 1, the main result in [9] and Lemma 3.11 in [7]. The proof of Theorem 4 may be completed by using Proposition 6.3 in [3] and Theorem 1.39 in [6].

Acknowledgments. I am deeply grateful to the anonymous referee for making valuable suggestions for improvement.

[^0]
References

[1] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Math., Vol. 93, Birkhäuser, 1991.
[2] V.V. Batyrev, Quantum cohomology rings of toric manifolds, Astérisque 218 (1993) 9-34.
[3] P. Biran, K. Cieliebak, Symplectic topology on subcritical manifolds, Comment. Math. Helv. 76 (2001) 712-753.
[4] J.-P. Demailly, L^{2}-vanishing theorems for positive line bundles and adjunction theory, in: F. Catanese, C. Ciliberto (Eds.), Transcendental Methods in Algebraic Geometry, Lecture Notes Math., Vol. 1646, Springer-Verlag, 1992, pp. 1-97.
[5] V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian \mathbb{T}^{n}-spaces, Progress in Math., Vol. 122, Birkhäuser, 1994.
[6] G.C. Lu, Gromov-Witten invariants and pseudo symplectic capacities, Preprint, math.SG/0103195, v6, 6 September, 2001.
[7] F. Schlenk, On symplectic folding, Preprint, math.SG/9903086, March 1999.
[8] B. Siebert, An update on (small) quantum cohomology, in: D.H. Phong, L. Vinet, S.T. Yau (Eds.), Mirror Symmetry III, International Press, 1999, pp. 279-312.
[9] J.C. Sikorav, Rigidité symplectique dans le cotangent de \mathbb{T}^{n}, Duke Math. J. 59 (1989) 227-231.
[10] C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000) 411-431.

[^0]: ${ }^{1}$ Partially supported by the NNSF 19971045 of China and Ministry of Education of China.

