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Abstract In this work we study the solution of Laplace’s equation in a domain with holes by an
iteration consisting of splitting the problem in an exterior one, around the holes, plus an
interior problem in the unholed domain. We show the existence of a decomposition of the
solution when the exterior problem is represented by means of a single-layer protential.
Also, for the three-dimensional case and with some adjustments for the two-dimensional
case, we prove convergence of the method by writing the iteration as a Jacobi iteration for
an operator equation and studying the spectrum of the iteration opdi@tite thisarticle:
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Un algorithme de Schwarz intérieur—extérieur et sa convergence

Résumé Dans ce travail on étudie la résolution de I'équation de Laplace sur un domaine avec
des trous par une méthode itérative consistente a diviser le probléme en un probleme
extérieur, autour des trous, plus un probléme intérieur dans le domaine complet. On
montre I'existence d’'une décomposition de la solution lorsque le probléeme extérieur est
représenté par une potentiel de couche simple. En plus, pour le cas tridimensionnel et pour
le bidimensionnel avec quelques modifications, on montre la convergence de la méthode en
I’écrivant comme une itération de Jacobi pour une équation opérationnelle et en étudiant le
spectre de I'opérateur d'itératioRour citer cet article: R. Celorrioet al., C. R. Acad. Sci.

Paris, Ser. | 334 (2002) 923-926. 0 2002 Académie des sciences/Editions scientifiques et
médicales Elsevier SAS

1. Introduction

This work is concerned with the definition and proof of convergence of an iterative method (in the spirit of
Schwarz algorithms [2]) for domains with interior holes. The basic idea consists of decoupling the solution
as the sum of an interior solution (for the domain without the obstacles) plus an exterior one (radiating
from the obstacles). As such, this method participates of the ideas of multiple scattering techniques, widely
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employed in physical sciences. Moreover, if we consider solving the interior problem with finite elements
and the exterior one with boundary elements, we also see its relation with Chimera-type methods.

Consider a bounded doma@® c R? (d = 2 or 3), with Lipschitz boundang and strictly containing
another domai, whose Lipschitz boundary is denotedibyall what follows can be straightforwardly ex-
tended to non-connectd? we can also include simple cracks as interior obstacles). The corresponding an-
nular domain — interior t& and exterior td” — is denoted2. We consider the following problem in%)

Aw=0 inQ, Yrw =gy, yrw =gr

for given gz € HY2(%), gr € HY2(IN), beingys andyr the trace operators. To solve this problem we
propose a Schwarz algorithm, solving in parallel interior problem@ iand exterior problems arourid
with a single-layer potential ansatz in this last case. Let us consider the single-layer pot&rfifl

Smp::/Fq>(.,y)¢(y)da),:Rd—>R,

whered® (x, y) :=1/|x — y| in three dimensions andl (x, y) := —log|x — y| in two. The iterative method
we propose is as follows: take starting vaItgés: &r andg% =gy;forn >1, solve

Au,=0 inQ, Up =S8rv¥n, Y e HY2(D)
Ysin = g%, yrSrm = gr
and interchange
gitti=gr —ysvn, g i=gr — yrua.

The sequence, + v,, restricted ta2 will be taken as an approximation of.

We will show the convergence of this method in three dimensions and some hypotheses and/or
modifications guaranteeing convergence in two dimensions.

Let Vr := yrSr : HY2(I") — HY2(I") be the single-layer operator. We recatf.([3]) that in two
dimensions, there is a unique soluti@h, ur) € H-Y2(I") x R of the equatiorVr6r — ur = 0 under the
restriction7-6r := (dr, 1r) = 1 (1r is the unit constant function dnand(-, -) is the HY/2(I") x HY2(I")
duality product):6r is the equilibrium distribution angkr is the Robin constant; the quantityr :=
exp(—ur) is called the logarithmic capacity of.

2. Decomposition theorem and conver gence of the method

Let £, :={u € HY(0) | Au =0} (o € {Q, Q}) andPr := {Sry | ¥ € H-V2(I)}.
We define the operator&sr := ysSrVyt : HY2(I') — HY2() and Kry : HY2(E) — HYZ(T)
defined byKrs g = yru, whereu € L satisfiesysu = g. We finally consider the operatasand:

I Ksr

A=T+K:= l:KFE 7

} tHY2(2) x HY2() — HY2(2) x HYA(T).
THEOREM 2.1. -Under the assumption tha&ir # 1 in two dimensions, and considering the elements
of L andPr restricted to2 we have thallo = Lo @ Pr.

Proof. —Itis clear thatC g + Pr C Lg. The fact thatCp NPr = 0 follows from the jumps of the normal
derivatives acrosE of the elements oPr.

SinceKyr and Kry are compactA is Fredholm of index zero. Besides, it is injective by the same
argument given to show the zero intersection of both sets. Moreover, givefig, the separate Dirichlet
data(hs, hr) := A~ 1(ysw, yrw) determine the elements of the desired decompositian.

The iterative method corresponds to the Jacobi iteration (also to the Neumann series iteration) for
the problem(Z + K)(hg, hr) = (gx, gr) Where hy and hp are the respective traces of the unique
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decompositiorw = u + v € Lo ® Pr. Therefore, convergence is restricted to when the spectral radius
of K is less than one. We will denotg ) to the spectrum of..

Consider the operatofés, := y=Sx. (with the obvious definition foSy,), Vsr := ysSr : H-Y2(I") —
H/2(x%), its adjointVrx := 1Sy and the selfadjoint operator

V= { Vy VZF] THY2(2) x HY2(1) — HY2(2) x HY2().
Vrs  Wr
THEOREM 2.2. —Assuming that in two dimensiods; < 1 (and without additional hypotheses in three
dimensiony o (K) is a discrete set of real values in the interyall, 1), converging to zero and symmetric
with respect to the origin.

Proof. —Since K is compact, all non-zero values in the spectrumkbfire eigenvalues. Elementary
linear algebra shows that eigenvaluesoére the square roots (real and complex) of thos&ef Ksr :
HY2(I) — HY2(T).

The hypotheses imply that is elliptic. Moreover, sincekry Ksr = Vry Vglvgrvr‘l, eigenvalues
of KrxKyxr are solutions of the generalized eigenvalue problémng Vglvgm// = AVry. They are,
therefore, strictly positive and sindg — Vrxs Vg, Yysris positive definite (because of the ellipticity 13},
they are less than one, which proves the resut.

The symmetry of the spectrum &f proves also that no gain is obtained by relaxing the Jacobi iteration.
Itis also straightforward that convergence of a related Gauss—Seidel iteration depends on the spectral radius
of Kry Kyr and is therefore equivalent to that of the Jacobi method.

3. Thetwo-dimensional case

In caseCy > 1, there are two practical ways of dealing with the problem in a way that leads to a con-
vergent situation: (a) rescaling the space variables to decrease the logarithmic capacity; (b) changing the
fundamental solution as follows. We consider(x, y) := —log|x — y| + ¢. If we use the modified poten-
tials (cf. [1]) Sg ¥ = Sty + eJry, with e > —u s, the whole of the proofs above can be shown to hold.

However, we are going to further investigate the behaviour of the spectréinngfenCy > 1 (we are
hence still using the original fundamental solution for the single-layer potentials). To do that we introduce
the operatord/f := Vr + eJr()1r, Vg := Vs + eJ=()1s, Vg = Ver + eJr(-)1s and Viy, defined
likewise. We will only consider values af > —uy, so that the related operatbf is elliptic. Again, we
only have to study the eigenvaluesif s Ksr.

A great deal of the analysis to come hinges on the following technical result, giving conditions on the
existence of negative eigenvalues of rank one definite negative perturbations of definite positive operators.

LEMMA 3.1.-Let V ¢ H c V’ be a triad of Hilbert spaces with dense compact injections. Let
A:V’'— V be bounded, selfadjoint and positive definite and consider V. Then, the operator
A — (-,a)a: V' — V has at most a single negative eigenvalue with a single associated eigenfunction.
Furthermore, ifA is elliptic, the operator is positive definite if and only( ~a, a) < 1.

Proof. —We restrict ourselves to the case afelliptic. We are interested in non-trivial solutions to
(A + Al)¢ = {¢,a)a for A > 0. Denoting equallyA to the restriction ofA to the subspac& c V' (as
such A is compact), it is clear that for all > 0, A + A7 : V — V is an injective Fredholm operator of
index zero and therefore has a bounded inverse. Bhen¢, a)(A + AI)~1a and hencde, a) # 0 and
eigenfunction spaces are one-dimensional. Moreover, the problem has a nontrivial solution if and only if
f) :=((A+xrI)"La,a)=1. This s also valid foi = 0.

The functionf : [0, o0) — R is positive, continuous of0, co), converges to zero as— oo and is
strictly decreasing sincg’(1) < 0 for allA > 0. Thenf(A) = 1 has a (single) root if and only if (0) > 1
and has no roots otherwise.
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In caseA is simply positive definite, the proof is essentially valid, but for the fact thistcontinuous on
0,00). O

THEOREM 3.2. —The eigenvalues dry Kxr lie in the interval(—oo, 1). Moreover, there is at most a
single negative eigenvalue aedKrsKsr) C (=1, 1) if and only if the functiorg(¢) := e((Krs Vg +
Vr)~ 1, 1r) is less than one for some> — 5.

Proof. —As before, the problem of studying the spectrunkefs Ksr is equivalent to studying solutions
of KrsKsrVry = AVryr. We remark that by its definition, it can be easily seen tkag1ly = 1r.
Moreover, for alle # —us, Krs = Vg (VE) ™1 Then

-1 -1 -1
KreKsrVr = Vi (VE) T Var = Vg (VE) VR — eJr (O1r = Vig (VE) T Ve — VE+ Vi,

and therefore the eigenvalues are real; siife- Viy (V) ~1VEL is positive definite, they are less than
one. By takingd := V&5 (VE)~1VE L anda := ¢%/211 in Lemma 3.1, we see that there is at most a negative
eigenvalue. Showing that this eigenvalue is greater thhis equivalent to showing th&rs Ksr Vr + Vi

is positive definite and this is accomplished by takiftig= Vﬁz(vg)—lvgr + Vr anda as before in
Lemma 3.1, which gives the necessary and sufficient condition for this.

Conditiong(e) < 1 for somes > —uy is not easy to verify. By differentiating in its definition, it can
be seen thag'(¢) = g(¢)(1 — g(¢))/e. The solutions to this differential equation agés) = 0 and the
uniparametric family /(¢ — C) for arbitraryC € R. Itis clear that the constagtdepends o andX, and
that the sign ok (¢) — 1 remains unchanged, so the condition holds or does not hold foirathe interval
considered.

PrROPOSITION 3.3.-If CrCx < 1,0(KrgKsr) C (-1, 1).

Proof. —Notice that we have to prove that the operakars Ksr Vi + Vi = Vs (VE) " IVER + Vi —
eJr(-)1r is positive definite. Applying Lemma 3.1 % — e Jr (1)1, it is clear that this operator is positive
definite if and only if 1> 8<V1—~_11[‘, 1r) = ¢/ur. Therefore, if there exists > —uy such that/ur < 1,
then we have positive-definitenessigf— ¢ 71 (-) 1r and hence of our original operator. This fact is possible
whenuy + ur > 1, which is equivalentt@€rCy <1. O

In the simple case of two concentric circles of radi R, the functiong(e) can be computed
exactly: g(¢) = ¢/(e — log(r R)). Therefores (KrgKxr) C (—1,1) if and only if r R < 1 (recall that
the logarithmic capacity of a circle is its radius. Numerical experiments show that the cofistathe
general expressiogi(e) = ¢/(e — C) depends strongly on the sizes of the boundaries and on their relative
positions.
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