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Abstract In this work we study the solution of Laplace’s equation in a domain with holes by an
iteration consisting of splitting the problem in an exterior one, around the holes, plus an
interior problem in the unholed domain. We show the existence of a decomposition of the
solution when the exterior problem is represented by means of a single-layer protential.
Also, for the three-dimensional case and with some adjustments for the two-dimensional
case, we prove convergence of the method by writing the iteration as a Jacobi iteration for
an operator equation and studying the spectrum of the iteration operator.To cite this article:
R. Celorrio et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 923–926.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Un algorithme de Schwarz intérieur–extérieur et sa convergence

Résumé Dans ce travail on étudie la résolution de l’équation de Laplace sur un domaine avec
des trous par une méthode itérative consistente à diviser le problème en un problème
extérieur, autour des trous, plus un problème intérieur dans le domaine complet. On
montre l’existence d’une décomposition de la solution lorsque le problème extérieur est
représenté par une potentiel de couche simple. En plus, pour le cas tridimensionnel et pour
le bidimensionnel avec quelques modifications, on montre la convergence de la méthode en
l’écrivant comme une itération de Jacobi pour une équation opérationnelle et en étudiant le
spectre de l’opérateur d’itération.Pour citer cet article : R. Celorrio et al., C. R. Acad. Sci.
Paris, Ser. I 334 (2002) 923–926.  2002 Académie des sciences/Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

This work is concerned with the definition and proof of convergenceof an iterative method (in the spirit of
Schwarz algorithms [2]) for domains with interior holes. The basic idea consists of decoupling the solution
as the sum of an interior solution (for the domain without the obstacles) plus an exterior one (radiating
from the obstacles). As such, this method participates of the ideas of multiple scattering techniques, widely
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employed in physical sciences. Moreover, if we consider solving the interior problem with finite elements
and the exterior one with boundary elements, we also see its relation with Chimera-type methods.

Consider a bounded domainQ ⊂ R
d (d = 2 or 3), with Lipschitz boundary� and strictly containing

another domainD, whose Lipschitz boundary is denoted by� (all what follows can be straightforwardly ex-
tended to non-connectedD; we can also include simple cracks as interior obstacles). The corresponding an-
nular domain – interior to� and exterior to� – is denoted�. We consider the following problem in H1(�)


w = 0 in�, γ�w = g�, γ�w = g�

for given g� ∈ H1/2(�), g� ∈ H1/2(�), beingγ� andγ� the trace operators. To solve this problem we
propose a Schwarz algorithm, solving in parallel interior problems inQ and exterior problems around�
with a single-layer potential ansatz in this last case. Let us consider the single-layer potential (cf. [1])

S�ψ :=
∫
�

�(·, y)ψ(y)dσy : R
d → R,

where�(x,y) := 1/|x − y| in three dimensions and�(x,y) := − log|x − y| in two. The iterative method
we propose is as follows: take starting valuesg1

� := g� andg1
� = g� ; for n� 1, solve∣∣∣∣∣∣


un = 0 inQ,

γ�un = gn�

∣∣∣∣∣∣
vn := S�ψn, ψn ∈ H−1/2(�)

γ�S�ψn = gn�

and interchange

gn+1
� := g� − γ�vn, gn+1

� := g� − γ�un.

The sequenceun + vn, restricted to� will be taken as an approximation ofw.
We will show the convergence of this method in three dimensions and some hypotheses and/or

modifications guaranteeing convergence in two dimensions.
Let V� := γ�S� : H−1/2(�) → H1/2(�) be the single-layer operator. We recall (cf. [3]) that in two

dimensions, there is a unique solution(θ�,µ�) ∈ H−1/2(�)× R of the equationV�θ� − µ� = 0 under the
restrictionJ�θ� := 〈θ�,1�〉 = 1 (1� is the unit constant function on� and〈·, ·〉 is the H−1/2(�)×H1/2(�)

duality product):θ� is the equilibrium distribution andµ� is the Robin constant; the quantityC� :=
exp(−µ�) is called the logarithmic capacity of�.

2. Decomposition theorem and convergence of the method

Let L◦ := {u ∈ H1(◦) |
u= 0} (◦ ∈ {Q,�}) andP� := {S�ψ |ψ ∈ H−1/2(�)}.
We define the operatorsK�� := γ�S�V−1

� : H1/2(�) → H1/2(�) and K�� : H1/2(�) → H1/2(�)

defined byK��g = γ�u, whereu ∈LQ satisfiesγ�u= g. We finally consider the operatorsA andK:

A := I +K :=
[

I K��

K�� I

]
: H1/2(�)× H1/2(�)→ H1/2(�)× H1/2(�).

THEOREM 2.1. –Under the assumption thatC� �= 1 in two dimensions, and considering the elements
of LQ andP� restricted to� we have thatL� = LQ ⊕P� .

Proof. –It is clear thatLQ +P� ⊂ L�. The fact thatLQ ∩P� = 0 follows from the jumps of the normal
derivatives across� of the elements ofP� .

SinceK�� andK�� are compact,A is Fredholm of index zero. Besides, it is injective by the same
argument given to show the zero intersection of both sets. Moreover, givenw ∈ L�, the separate Dirichlet
data(h�,h�) :=A−1(γ�w,γ�w) determine the elements of the desired decomposition.✷

The iterative method corresponds to the Jacobi iteration (also to the Neumann series iteration) for
the problem(I + K)(h�,h�) = (g�,g�) where h� and h� are the respective traces of the unique
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decompositionw = u + v ∈ LQ ⊕ P� . Therefore, convergence is restricted to when the spectral radius
of K is less than one. We will denoteσ(K) to the spectrum ofK.

Consider the operatorsV� := γ�S� (with the obvious definition forS� ), V�� := γ�S� : H−1/2(�) →
H1/2(�), its adjointV�� := γ�S� and the selfadjoint operator

V :=
[
V� V��
V�� V�

]
: H−1/2(�)× H−1/2(�)→ H1/2(�)× H1/2(�).

THEOREM 2.2. –Assuming that in two dimensionsC� < 1 (and without additional hypotheses in three
dimensions), σ(K) is a discrete set of real values in the interval(−1,1), converging to zero and symmetric
with respect to the origin.

Proof. –SinceK is compact, all non-zero values in the spectrum ofK are eigenvalues. Elementary
linear algebra shows that eigenvalues ofK are the square roots (real and complex) of those ofK��K�� :
H1/2(�)→ H1/2(�).

The hypotheses imply thatV is elliptic. Moreover, sinceK��K�� = V��V
−1
� V��V

−1
� , eigenvalues

of K��K�� are solutions of the generalized eigenvalue problemV��V
−1
� V��ψ = λV�ψ . They are,

therefore, strictly positive and sinceV� −V��V
−1
� V�� is positive definite (because of the ellipticity ofV),

they are less than one, which proves the result.✷
The symmetry of the spectrum ofK proves also that no gain is obtained by relaxing the Jacobi iteration.

It is also straightforward that convergence of a related Gauss–Seidel iteration depends on the spectral radius
of K��K�� and is therefore equivalent to that of the Jacobi method.

3. The two-dimensional case

In caseC� > 1, there are two practical ways of dealing with the problem in a way that leads to a con-
vergent situation: (a) rescaling the space variables to decrease the logarithmic capacity; (b) changing the
fundamental solution as follows. We consider�ε(x, y) := − log|x − y| + ε. If we use the modified poten-
tials (cf. [1]) Sε

�ψ = S�ψ + εJ�ψ , with ε >−µ� , the whole of the proofs above can be shown to hold.
However, we are going to further investigate the behaviour of the spectrum ofK whenC� > 1 (we are

hence still using the original fundamental solution for the single-layer potentials). To do that we introduce
the operatorsV ε

� := V� + εJ�(·)1� , V ε
� := V� + εJ�(·)1� , V ε

�� := V�� + εJ�(·)1� andV ε
�� defined

likewise. We will only consider values ofε > −µ� , so that the related operatorVε is elliptic. Again, we
only have to study the eigenvalues ofK��K�� .

A great deal of the analysis to come hinges on the following technical result, giving conditions on the
existence of negative eigenvalues of rank one definite negative perturbations of definite positive operators.

LEMMA 3.1. –Let V ⊂ H ⊂ V ′ be a triad of Hilbert spaces with dense compact injections. Let
A : V ′ → V be bounded, selfadjoint and positive definite and considera ∈ V . Then, the operator
A − 〈·, a〉a : V ′ → V has at most a single negative eigenvalue with a single associated eigenfunction.
Furthermore, ifA is elliptic, the operator is positive definite if and only if〈A−1a, a〉< 1.

Proof. –We restrict ourselves to the case ofA elliptic. We are interested in non-trivial solutions to
(A + λI)φ = 〈φ,a〉a for λ � 0. Denoting equallyA to the restriction ofA to the subspaceV ⊂ V ′ (as
suchA is compact), it is clear that for allλ > 0, A + λI : V → V is an injective Fredholm operator of
index zero and therefore has a bounded inverse. Thenφ = 〈φ,a〉(A + λI)−1a and hence〈φ,a〉 �= 0 and
eigenfunction spaces are one-dimensional. Moreover, the problem has a nontrivial solution if and only if
f (λ) := 〈(A+ λI)−1a, a〉 = 1. This is also valid forλ= 0.

The functionf : [0,∞) → R is positive, continuous on[0,∞), converges to zero asλ → ∞ and is
strictly decreasing sincef ′(λ) < 0 for all λ > 0. Thenf (λ)= 1 has a (single) root if and only iff (0)� 1
and has no roots otherwise.
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In caseA is simply positive definite, the proof is essentially valid, but for the fact thatf is continuous on
(0,∞). ✷

THEOREM 3.2. –The eigenvalues ofK��K�� lie in the interval(−∞,1). Moreover, there is at most a
single negative eigenvalue andσ(K��K��) ⊂ (−1,1) if and only if the functiong(ε) := ε〈(K��V

ε
�� +

V�)
−11�,1�〉 is less than one for someε >−µ� .

Proof. –As before, the problem of studying the spectrum ofK��K�� is equivalent to studying solutions
of K��K��V�ψ = λV�ψ . We remark that by its definition, it can be easily seen thatK��1� = 1� .
Moreover, for allε �= −µ� , K�� = V ε

��(V
ε
�)

−1. Then

K��K��V� = V ε
��

(
V ε
�

)−1
V�� = V ε

��

(
V ε
�

)−1
V ε
�� − εJ�(·)1� = V ε

��

(
V ε
�

)−1
V ε
�� − V ε

� + V�,

and therefore the eigenvalues are real; sinceV ε
� − V ε

��(V
ε
�)

−1V ε
�� is positive definite, they are less than

one. By takingA := V ε
��(V

ε
�)

−1V ε
�� anda := ε1/21� in Lemma 3.1, we see that there is at most a negative

eigenvalue. Showing that this eigenvalue is greater than−1 is equivalent to showing thatK��K��V� +V�
is positive definite and this is accomplished by takingA := V ε

��(V
ε
�)

−1V ε
�� + V� and a as before in

Lemma 3.1, which gives the necessary and sufficient condition for this.✷
Conditiong(ε) < 1 for someε > −µ� is not easy to verify. By differentiating in its definition, it can

be seen thatg′(ε) = g(ε)(1 − g(ε))/ε. The solutions to this differential equation areg(ε) ≡ 0 and the
uniparametric familyε/(ε−C) for arbitraryC ∈ R. It is clear that the constantC depends on� and�, and
that the sign ofg(ε)− 1 remains unchanged, so the condition holds or does not hold for allε in the interval
considered.

PROPOSITION 3.3. –If C�C� < 1, σ(K��K��)⊂ (−1,1).

Proof. –Notice that we have to prove that the operatorK��K��V� + V� = V ε
��(V

ε
�)

−1V ε
�� + V� −

εJ�(·)1� is positive definite. Applying Lemma 3.1 toV�−εJ�(·)1� , it is clear that this operator is positive
definite if and only if 1> ε〈V −1

� 1�,1�〉 = ε/µ� . Therefore, if there existsε >−µ� such thatε/µ� < 1,
then we have positive-definiteness ofV�−εJ�(·)1� and hence of our original operator. This fact is possible
whenµ� +µ� > 1, which is equivalent toC�C� < 1. ✷

In the simple case of two concentric circles of radiir < R, the functiong(ε) can be computed
exactly:g(ε) = ε/(ε − log(r R)). Thereforeσ(K��K��) ⊂ (−1,1) if and only if r R < 1 (recall that
the logarithmic capacity of a circle is its radius. Numerical experiments show that the constantC in the
general expressiong(ε) = ε/(ε − C) depends strongly on the sizes of the boundaries and on their relative
positions.
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