The effect of perturbations on the first eigenvalue of the p-Laplacian

Ana-Maria Matei

McMaster University, Department of Mathematics and Statistics, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

Received 7 December 2001; accepted 3 June 2002

Note presented by Thierry Aubin.

Abstract

Let Ω be a domain with Lipschitzian boundary of a compact Riemannian manifold (M,g) and p>1. We prove that we can make the volume of M arbitrarily close to the volume of (Ω,g) while the first eigenvalue of the p-Laplacian on M remains uniformly bounded from below in terms of the the first eigenvalue of the Neumann problem for the p-Laplacian on (Ω,g) . To cite this article: A.-M. Matei, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 255–258. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

L'éffet des pérturbations sur la première valeur propre du *p*-Laplacien

Résumé

Soit Ω un domaine à bord Lipschitz d'une variété riemannienne compacte (M,g) et p>1. Nous montrons qu'on peut rendre le volume de M arbitrairement proche du volume de (Ω,g) tout en gardant la première valeur propre du p-Laplacien sur M uniformement minorée en termes de la première valeur propre du problème de Neumann pour le p-Laplacien sur (Ω,g) . Pour citer cet article : A.-M. Matei, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 255–258. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Preliminaries and main result

Let (M, g) be a compact Riemannian manifold. The *p*-Laplacian on (M, g) is defined by $\Delta_p f := \delta(|\mathrm{d} f|^{p-2}\,\mathrm{d} f)$, where $\delta = -\mathrm{div}_g$ is the opposite of the divergence. This operator may be seen as a natural extension of the Laplace–Beltrami operator which corresponds to p=2.

The real constants λ for which the equation $\Delta_p f = \lambda |f|^{p-2} f$ has nontrivial solutions are the *eigenvalues* of Δ_p and the associated solutions are the *eigenfunctions*.

It was proved that the set of the nonzero eigenvalues is a nonempty, unbounded subset of $]0, \infty[[2]]$. Its infimum $\lambda_{1,p}(M,g)$ is itself a positive eigenvalue called the *first eigenvalue of* Δ_p and has the following variational caracterisation [4]:

$$\lambda_{1,p}(M,g) = \inf \left\{ \frac{\int_M |\mathrm{d}f|^p \nu_g}{\int_M |f|^p \nu_g}; \ f \in W^{1,p}(M) \setminus \{0\}, \ \int_M |f|^{p-2} f \nu_g = 0 \right\}.$$

E-mail address: mateiam@icarus.math.mcmaster.ca (A.-M. Matei).

Let Ω be a domain in M and consider the Dirichlet problem associated to Δ_p on Ω :

$$\begin{cases} \Delta_p f = \mu |f|^{p-2} f & \text{in } \Omega, \\ f = 0 & \text{on } \partial \Omega. \end{cases}$$

The first eigenvalue for this problem $\mu_{1,p}(\Omega,g)$, has the variational characterization

$$\mu_{1,p}(\Omega,g) = \inf \left\{ \frac{\int_{\Omega} |\mathrm{d}f|^p \nu_g}{\int_{\Omega} |f|^p \nu_g}; \ f \in W_0^{1,p}(\Omega,g) \setminus \{0\} \right\}.$$

We did not find in the literature the corresponding characterization for the Neumann problem for Δ_p . By analogy with the linear case consider

$$\lambda_{1,p}^N(\Omega,g) := \inf \left\{ \frac{\int_{\Omega} |\mathrm{d}f|^p \nu_g}{\int_{\Omega} |f|^p \nu_g}; \ f \in \mathrm{W}^{1,p}(\Omega,g) \setminus \{0\}, \ \int_{\Omega} |f|^{p-2} f \nu_g = 0 \right\}.$$

Mimiking the proof of the closed case [4] one obtain that $\lambda_{1,p}^N(\Omega,g)$ is the first nonzero eigenvalue for the Neumann type problem

$$\begin{cases} \Delta_p f = |f|^{p-2} f & \text{in } \Omega, \\ \mathrm{d} f(\eta) = 0 & \text{on } \partial \Omega, \end{cases}$$

where η denotes the exterior unit normal vector field to $\partial \Omega$.

A more general regularity result [3] says that the eigenfunctions for these problems are locally $C^{1,\alpha}$. The main result of this Note is the following.

THEOREM 1. – Let (M,g) be a compact Riemannian manifold, p>1 and $\Omega\subset M$ a domain with *Lipschitzian boundary. Then for any* $\delta > 0$, there exists a metric \tilde{g} on M such that:

- (i) $g_{|\Omega} = \tilde{g}_{|\Omega}$;
- $\begin{array}{ll} \text{(ii)} & \lambda_{1,p}(M,\tilde{g}) > \lambda_{1,p}^N(\Omega,g) \delta;\\ \text{(iii)} & |\text{Vol}(M,\tilde{g}) \text{Vol}(\Omega,g)| < \delta. \end{array}$

For p=2 and $m=\dim M \geqslant 3$, this result is contained in Theorem III.1 of [1]; we use the same type of metrics but the arguments from the linear case do not apply to the nonlinear case.

The proof of Theorem 1 is based only on functional analysis in Sobolev spaces without using deeper properties of the eigenfunctions and allows us to consider the case of surfaces.

As a consequence of Theorem 1. we have

COROLLARY 2. – If $1 then Theorem 1 remains true if we replace (ii) by (ii') <math>|\lambda_{1,p}(M,\tilde{g})|$ – $\lambda_{1,n}^N(\Omega,g)| < \delta.$

2. Proof of Theorem 1

Part I: singular metrics. – For $\varepsilon > 0$ denote by $\varphi_{\varepsilon} = 1 \cdot \chi_{\Omega} + \varepsilon \cdot \chi_{M \setminus \Omega}$ and by

$$\lambda_{1,p}(\varepsilon) = \inf \left\{ R_{\varepsilon}(f) := \frac{\int_{M} |\mathrm{d}f|^{p} (\varphi_{\varepsilon})^{(m-p)/2} \nu_{g}}{\int_{M} |f|^{p} (\varphi_{\varepsilon})^{m/2} \nu_{g}} \left| f \in \mathrm{W}^{1,p}(M,g) \setminus \{0\}, \ \int_{M} |f|^{p-2} f(\varphi_{\varepsilon})^{m/2} \nu_{g} = 0 \right\}.$$

Let $\delta > 0$. The aim of this first part is to prove that there exists ε small enough such that $\lambda_{1,p}(\varepsilon) \geqslant$ $\lambda_{1,p}^N(\Omega,g) - \frac{\delta}{2}$ and $\varepsilon^{m/2} \text{Vol}(M \setminus \Omega,g) < \frac{\delta}{2}$.

To cite this article: A.-M. Matei, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 255-258

We may assume that $\lambda_{1,p}(\varepsilon)$ is bounded from above by a constant c_0 as $\varepsilon \to 0$. Since $\partial \Omega$ is Lipschitzian, classical density arguments implies that there exists $f_{\varepsilon} \in W^{1,p}(M,g) \setminus \{0\}$ with $\int_M |f_{\varepsilon}|^{p-2} f_{\varepsilon} (\varphi_{\varepsilon})^{m/2} \nu_g = 0$ such that $\lambda_{1,p}(\varepsilon) = R_{\varepsilon}(f_{\varepsilon})$. Let A_{ε} , B_{ε} be the nodal domains of f_{ε} . Then

$$\lambda_{1,p}(\varepsilon) = \frac{\int_{A_{\varepsilon}} |\mathrm{d}f_{\varepsilon}|^p (\varphi_{\varepsilon})^{(m-p)/2} \nu_g}{\int_{A_{\varepsilon}} |f_{\varepsilon}|^p (\varphi_{\varepsilon})^{m/2} \nu_g} = \frac{\int_{B_{\varepsilon}} |\mathrm{d}f_{\varepsilon}|^p (\varphi_{\varepsilon})^{(m-p)/2} \nu_g}{\int_{B_{\varepsilon}} |f_{\varepsilon}|^p (\varphi_{\varepsilon})^{m/2} \nu_g}.$$

We claim that for ε small enough, f_{ε} change sign on Ω . Indeed if for instance $A_{\varepsilon} \cap \Omega = \emptyset$, then

$$c_{0} \geqslant \lambda_{1,p}(\varepsilon) = \frac{\int_{A_{\varepsilon}} |\mathrm{d}f_{\varepsilon}|^{p} (\varphi_{\varepsilon_{n}})^{(m-p)/2} \nu_{g}}{\int_{A_{\varepsilon}} |f_{\varepsilon}|^{p} (\varphi_{\varepsilon})^{m/2} \nu_{g}} = \frac{\varepsilon^{(m-p)/2} \int_{A_{\varepsilon}} |\mathrm{d}f_{\varepsilon}|^{p} \nu_{g}}{\varepsilon^{m/2} \int_{A_{\varepsilon}} |f_{\varepsilon}|^{p} \nu_{g}}$$
$$\geqslant \varepsilon^{-p/2} \mu_{1,p}(A_{\varepsilon}, g) \geqslant \varepsilon^{-p/2} \mu_{1,p}(M \setminus \Omega, g),$$

where the last inequality is due to the fact that $A_{\varepsilon} \subset M \setminus \Omega$.

It follows that for ε small enough, $A_{\varepsilon} \cap \Omega \neq \emptyset$ and $B_{\varepsilon} \cap \Omega \neq \emptyset$. Hence, there exists a constant c_{ε} such that the map $\tilde{f}_{\varepsilon} = f_{\varepsilon}^+ + c_{\varepsilon} f_{\varepsilon}^-$ satisfies the orthogonality condition on Ω : $\int_{\Omega} |\tilde{f}_{\varepsilon}|^{p-2} \tilde{f}_{\varepsilon} \nu_g = 0$. Moreover $R_{\varepsilon}(f_{\varepsilon}) = R_{\varepsilon}(\tilde{f}_{\varepsilon})$ and therefore

$$\lambda_{1,p}(\varepsilon) = R_{\varepsilon}(\tilde{f}_{\varepsilon}) = \frac{\int_{\Omega} |d\tilde{f}_{\varepsilon}|^{p} \nu_{g} + \varepsilon^{(m-p)/2} \int_{M \setminus \Omega} |d\tilde{f}_{\varepsilon}|^{p} \nu_{g}}{\int_{\Omega} |\tilde{f}_{\varepsilon}|^{p} \nu_{g} + \varepsilon^{m/2} \int_{M \setminus \Omega} |\tilde{f}_{\varepsilon}|^{p} \nu_{g}}.$$
(1)

We may normalise \tilde{f}_{ε} to have $\int_{M} |\tilde{f}_{\varepsilon}|^{p} \nu_{g} = 1$. Then since $\int_{\Omega} |\mathrm{d}\tilde{f}_{\varepsilon}|^{p} \nu_{g} \leqslant \int_{M} |\mathrm{d}\tilde{f}_{\varepsilon}|^{p} (\varphi_{\varepsilon})^{(m-p)/2} \nu_{g} \leqslant c_{0}$, we have that $(\tilde{f}_{\varepsilon})$ is bounded in $W^{1,p}(\Omega,g)$ as $\varepsilon \to 0$. Since $\partial \Omega$ is Lipschitzian, we may extract a sequence $\varepsilon_{n} \to 0$, such that there exists $\tilde{f} \in W^{1,p}(\Omega,g)$ with $\tilde{f}_{\varepsilon_{n}} \to \tilde{f}$ strongly in $L^{p}(\Omega,g)$ and weakly in $W^{1,p}(\Omega,g)$. The strong convergence gives $\int_{\Omega} |\tilde{f}|^{p} \nu_{g} = \lim_{n \to \infty} \int_{\Omega} |\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g}$ and the orthogonality condition for $\tilde{f}: \int_{\Omega} |\tilde{f}|^{p-2} \tilde{f} \nu_{g} = \lim_{n \to \infty} \int_{\Omega} |\tilde{f}_{\varepsilon_{n}}|^{p-2} \tilde{f}_{\varepsilon_{n}} \nu_{g} = 0$. The weak convergence implies $\int_{\Omega} |\mathrm{d}\tilde{f}|^{p} \nu_{g} \leqslant \liminf_{n \to \infty} \int_{\Omega} |\mathrm{d}\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g}$.

There are two possibilities:

• $\tilde{f} \neq 0$. We may pass to the limit in (1) and obtain from the discussion above

$$\liminf_{n \to \infty} \lambda_{1,p}(\varepsilon_n) \geqslant \liminf_{n \to \infty} \frac{\int_{\Omega} |d\tilde{f}_{\varepsilon_n}|^p \nu_g}{\int_{\Omega} |\tilde{f}_{\varepsilon_n}|^p \nu_g + \varepsilon_n^{m/2}} \geqslant \frac{\int_{\Omega} |d\tilde{f}|^p \nu_g}{\int_{\Omega} |\tilde{f}|^p \nu_g} \geqslant \lambda_{1,p}^N(\Omega,g). \tag{2}$$

• $\tilde{f} = 0$. From (1) we have

$$\lambda_{1,p}(\varepsilon_{n}) \geqslant \min \left\{ \frac{\int_{\Omega} |d\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g}}{\int_{\Omega} |\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g}}, \frac{\varepsilon_{n}^{(m-p)/2} \int_{M \setminus \Omega} |d\tilde{f}_{\varepsilon_{n}}|^{\nu_{g}}}{\varepsilon_{n}^{m/2} \int_{M \setminus \Omega} |\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g}} \right\}$$

$$\geqslant \min \left\{ \lambda_{1,p}^{N}(\Omega, g), \ \varepsilon_{n}^{-p/2} \int_{M \setminus \Omega} |d\tilde{f}_{\varepsilon_{n}}|^{p} \nu_{g} \right\}. \tag{3}$$

Now if $\limsup_{n\to\infty}\int_{M\setminus\Omega}|\mathrm{d}\,\tilde{f}_{\varepsilon_n}|^p\nu_g=0$, then since $\tilde{f}_{\varepsilon_n}$ is also bounded in $\mathrm{L}^p(M,g)$ and in $\mathrm{W}^{1,p}(\Omega,g)$ we have that $\tilde{f}_{\varepsilon_n}$ is bounded in $\mathrm{W}^{1,p}(M,g)$. Quite to extract a subsequence again, there exists $\widetilde{F}\in\mathrm{W}^{1,p}(M,g)$ such that $\tilde{f}_{\varepsilon_n}$ converges to \widetilde{F} strongly in $\mathrm{L}^p(M,g)$ and weakly in $\mathrm{W}^{1,p}(M,g)$. The unicity of the limit implies that $\widetilde{F}=\widetilde{f}=0$ in Ω . On the other hand, the same type of arguments implies that quite to extract a subsequence again we have weak convergence to \widetilde{F} in $\mathrm{W}^{1,p}(M\setminus\Omega,g)$

and therefore

$$\int_{M} \left| d\widetilde{F} \right|^{p} \nu_{g} = \int_{M \setminus \Omega} \left| d\widetilde{F} \right|^{p} \nu_{g} \leqslant \liminf_{n \to \infty} \int_{M \setminus \Omega} \left| d\widetilde{f}_{\varepsilon_{n}} \right|^{p} \nu_{g} = 0 \quad \Rightarrow \quad \widetilde{F} = 0 \text{ on } M.$$

But this contradicts $\int_M |\widetilde{F}|^p v_g = \lim_{n \to \infty} \int_M |\widetilde{f}_n|^p v_g = 1$.

It follows that we must have $\limsup_{n\to\infty}\int_{M\setminus\Omega}|\mathrm{d}\,\tilde{f}_{\varepsilon_n}|^p\,\nu_g>0$ and therefore when passing to the limit in (3) we obtain

$$\limsup_{n \to \infty} \lambda_{1,p}(\varepsilon_n) \geqslant \lambda_{1,p}^N(\Omega, g). \tag{4}$$

Inequalities (2), (4) yield the desired result.

Part II: smooth metrics. – Let $\delta > 0$ and take ε small enough such that $\lambda_{1,p}(\varepsilon) > \lambda_{1,p}^N(\Omega,g) - \frac{\delta}{2}$ and $\varepsilon^{m/2} \text{Vol}(M \setminus \Omega,g) < \frac{\delta}{2}$.

Let φ_n be a sequence of $C^{\infty}(M)$ functions such that φ_n converges to $\varphi_{\varepsilon} = 1 \cdot \chi_{\Omega} + \varepsilon \cdot \chi_{M \setminus \Omega}$ and $\varphi_n = 1$ on Ω , $\varepsilon \leqslant \varphi_n \leqslant 1$ on $M \setminus \Omega$. Consider the family of metrics on M: $g_n = \varphi_n g$.

Our aim in this part is to prove that for n big enough, $\lambda_{1,p}(M,g_n) \ge \lambda_{1,p}(\varepsilon) - \frac{\delta}{2}$.

It suffices to consider the case where $\lambda_{1,p}(M,g_n)$ is bounded from above by a positive constant K_0 .

Let f_n be an eigenfunction for $\lambda_{1,p}(M,g_n)$ such that $\int_M |f_n|^p \nu_{g_n} = 1$. Then $\int_M |\mathrm{d}f_n|^p \nu_{g_n} \leqslant K_0$ and the sequence f_n is bounded in $\mathrm{W}^{1,p}(M,g)$; indeed we have $\int_M |f_n|^p \nu_g \leqslant \varepsilon^{-m/2} \int_M |f_n|^p \nu_{g_n} = \varepsilon^{-m/2}$ and $\int_M |\mathrm{d}f_n|^p \nu_g \leqslant \max\{1,\varepsilon^{(p-m)/2}\} \int_M |\mathrm{d}f_n|^p \nu_{g_n} \leqslant K_0 \max\{1,\varepsilon^{(p-m)/2}\}.$

Quite to extract a subsequence there exists $f_0 \in W^{1,p}(M,g)$ such that $f_n \to f_0$ strongly in $L^p(M,g)$ and weakly in $W^{1,p}(M,g)$. The strong convergence implies

$$\int_{M} |f_{0}|^{p} \varphi_{\varepsilon}^{m/2} \nu_{g} = \lim_{n \to \infty} \int_{M} |f_{n}|^{p} \nu_{g_{n}} = 1, \qquad \int_{M} |f_{0}|^{p-2} f_{0} \varphi_{\varepsilon}^{m/2} \nu_{g} = \lim_{n \to \infty} \int_{M} |f_{n}|^{p-2} f_{n} \nu_{g_{n}} = 0,$$

while the weak convergence gives $\liminf_{n\to\infty}\int_M|\mathrm{d}f_n|^p\nu_{g_n}\geqslant\int_M|\mathrm{d}f_0|^p\varphi_{\varepsilon}^{(m-p)/2}\nu_g$. Hence

$$\liminf_{n\to\infty} \left(\lambda_{1,p}(M,g_n)\right) = \liminf_{n\to\infty} \frac{\int_M |\mathrm{d}f_n|^p \nu_{g_n}}{\int_M |f_n|^p \nu_{g_n}} \geqslant \frac{\int_M |\mathrm{d}f_0|^p \varphi_{\varepsilon}^{(m-p)/2} \nu_g}{\int_M |f_0|^p \varphi_{\varepsilon}^{m/2} \nu_g} \geqslant \lambda_{1,p}(\varepsilon).$$

Choosing now n big enough and $\tilde{g} = g_n$ we have $\lambda_{1,p}(M,\tilde{g}) \geqslant \lambda_{1,p}(\varepsilon) - \frac{\delta}{2} \geqslant \lambda_{1,p}^N(\Omega,g) - \delta$ and $|\operatorname{Vol}(M,\tilde{g}) - \operatorname{Vol}(\Omega,g)| = \operatorname{Vol}(M \setminus \Omega,\tilde{g}) < \operatorname{Vol}(M \setminus \Omega,g) + \frac{\delta}{2} < \delta$.

Remark 3. – The proof of Corollary 2 follows from the same type of arguments as above.

References

- [1] Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non nulle du Laplacien, Comment. Math. Helv. 61 (1986) 254–270.
- [2] J.P. Garzia Azorero, I. Peral Alonso, Existence and nonuniqueness for the *p*-Laplacian eigenvalues, Comm. Partial Differential Equations 12 (1987) 1389–1430.
- [3] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126–150.
- [4] L. Veron, Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact riemannian manifolds, Colloq. Math. Soc. Janos Bolyai 62 (1991) 317–352.