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Note presented by Yves Meyer.

Abstract We present an almost sure ergodic theorem for a class of self-interacting diffusions on a
compact Riemannian manifold.To cite this article: M. Benaim, O. Raimond, C. R. Acad.
Sci. Paris, Ser. I 335 (2002) 541–544.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Diffusions auto attractives/repulsives

Résumé Nous présentons un résultat de type théorème ergodique presque sûr pour une classe
de diffusions inter-agissantessur une variété Riemanienne compacte.Pour citer cet
article : M. Benaim, O. Raimond, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541–544.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

A self interacting diffusionis a continuous time stochastic process living on a compact connected
Riemannian manifoldM which can be typically described as a solution to a stochastic differential equation
(SDE) of the form

dXt =
∑
i

Fi(Xt ) ◦ dBit − α

2t

( ∫ t

0
∇VXs (Xt )ds

)
dt, (1)

where(Bi)i is a family of independent Brownian motions,(Fi)i is a family of smooth vector fields on
M such that

∑
i Fi(Fif ) = �f (for f ∈ C∞(M)) where� denotes the Laplacian onM, and (u, x) ∈

M × M �→ Vu(x) ∈ R is a smooth (at least C3) “potential”. The parameterα is real and measures the
strength of the interaction.

Such a process is characterized by the fact that the drift term in Eq. (1) depends both on the position of
the process and its empirical occupation measure:

µt = 1

t

∫ t

0
δXs ds. (2)

In [2] it is shown that the asymptotic behavior of{µt } can be precisely described in terms a certain
deterministic semi-flow� = {�t }t�0 defined on the space of Borel probability measures onM. For
instance, there are situations (depending on the shape ofV ) in which {µt } converges almost surely to
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an equilibrium pointµ∗ of � and other situations where the limit set of{µt } coincides almost surely with
a periodic orbit for� (see the examples in Section 4 of [2]).

The purpose of this note is to announce new results showing that for a certain class of potentials,{µt }
converges almost surely (up to a change of variable) to the critical set of an “energy” function. This
encompasses most of the examples considered in [2] and enlightens the results of [2]. It also allows to
give a sensible definition ofself-attractingor repelling diffusions. In particular, we can show that under
a natural assumption (Hypothesis 1.2 below) there is a critival valueαc < 0 such thatP(µt → λ) > 0 for
α > αc andP(µt → λ)= 0 for α < αc; whereλ stands for the Riemannian probability onM.

While some of the proofs are sketched here, the details will be given in [3].

1. Hypotheses

The main assumption is the following:

HYPOTHESIS 1.1 (Standing assumption). – There exists a compact spaceC, a Borel probability
measureν overC, a continuous functionG :C ×M → R, and a real numberβ such that

V (x, y)=
∫
C

G(u,x)G(u,y)ν(du)+ β.

A process (1) satisfying 1.1 will be calledself-attractingfor α � 0 andself-repellingotherwise.
We sometime use the following additional hypothesis:

HYPOTHESIS 1.2 (Occasional assumption). – The mapping

Vλ : x �→ Vλ(x)=
∫
M

V (x, y)λ(dy)

is constant.

This later condition has the interpretation that if the empirical occupation measure ofXt is (close to)λ
then the drift term in (1) is (close to) zero. In other words, if the process has visitedM “uniformly” between
times 0 andt, then it has no preferred directions and behaves like a Brownian motion.

Several examples of potentials satisfying Hypotheses 1.1 and 1.2 are given in [3].

Remark. – The class of potential verifying Hypothesis 1.1 belong to a more general class introduced by
Ben Arous and Brunaud in [4].

2. Statement of main results

Let M(M) denote the space of bounded Borel measures onM. For µ ∈ M(M) we letGµ ∈ C0(C)

denote the function defined by

Gµ(u)=
∫
M

G(u,x)µ(dx). (3)

If g ∈ L2(λ) we writeGg for G(gλ), wheregλ stands for the measure whose Radon–Nikodym derivative
with respect toλ is g. Associated toG is the operatorG∗ : L2(ν)→ L2(λ), defined by

G∗f (x)=
∫
C

G(u,x)f (u)ν(du). (4)

Let M0(M)⊂ M(M) be the set consisting of measuresµ such thatµ(M)= 0 and letH ⊂ L2(ν) denote
the closure ofG(M0(M)) in L2(ν). ThenH (equipped with the L2(ν) topology) is an Hilbert space. Define
B to be the Hilbert affine space parallel toH containingGλ:

B = {
f ∈ L2(ν) : f −Gλ ∈ H

}
.
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DEFINITION 2.1. – The “energy function” associated to the data((C, ν),G,α) is the functional
J : B → R defined by

J (f )= 1

2
‖f ‖2

L2(ν)
+ 1

α
log

[∫
M

e−α(G∗f )(x)λ(dx)

]
. (5)

We let

crit(J )= {
f ∈ B : ∇J (f )= 0

}
denote thecritical set of J.

Let P(M) ⊂ M(M) be the set of Borel probabilities overM, equipped with the topology of weak*
convergence. Thelimit setof {µt } denotedL({µt }) is the set of limits (inP(M)) of convergent sequences
{µtk}, tk → ∞.

The following theorem describesL({µt }) in terms ofcrit(J ).

THEOREM 2.1. – Assume Hypothesis1.1. Then the following properties hold with probability one:
(i) L({µt }) is a compact connected subset ofP(M).

(ii) Letµ ∈L({µt }). Thenµ has a smooth (Ck if V is Ck) density with respect toλ characterized by

f =Gµ ∈ crit(J ),

and

dµ

dλ
= ξ(αG∗f ),

whereξ : C0(M)→ C0(M) is the function defined by

ξ(f )(x)= e−f (x)∫
M e−f (y)λ(dy)

. (6)

Givenµ ∈ P(M) let#(µ) denote the Borel probability measure absolutely continuous with respect toλ

whose Radon–Nikodym density is

d#(µ)

dλ
= ξ(αVµ), (7)

whereVµ is defined likeGµ with V instead ofG. Sinceξ(αVµ) = ξ(αG∗Gµ), Theorem 2.1 can be
rephrased as follows:

COROLLARY 2.2. –With probability oneL({µt }) is a compact connected subset of

Fix(#)= {
µ ∈ P(M) : µ=#(µ)

}
.

Sketch of the proof of Theorem2.1. – The vector fieldF defined onM(M) by F(µ) = −µ + #(µ)

induces a continuous semi-flow{�t } on P(M) (see Section 3 in [2]). By Theorem 3.8 in [2]L= L({µt })
is almost surely anattractor free setfor �. In other words, it is a compact invariant set for� and�|L (�
restricted toL) is a chain-transitive flowin the sense of Conley [5]. Now let$ = {$t } be the local flow
induced by the vector fieldX= −∇J. The change of variablef =Gµ shows thatG ◦�t =$t ◦G. Hence
G(L) is a compact invariant set for$ and$|G(L) is chain-transitive. The last step is the observation that
X = −∇J is a Fredholm vector field (see[6]). Thus, by a theorem of Tromba [6] (extending Sard’s lemma
to functionals whose gradient is Fredholm) the set of critical values ofJ has empty interior. This implies
that any chain-transitive set for$ consists of critical points (see Proposition 6.4 of [1]).✷

With Theorem 2.1 in hands, it is now clear that our description of self-interacting diffusions (satisfying
Hypothesis 1.1) onM relies on our understanding of the critical point structure ofJ. A first step in this
direction is the observation thatJ is convex forα large enough.
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THEOREM 2.3. – Let

W∗ = sup
x,y∈M

(
V (x, x)+ V (y, y)

2
− V (x, y)

)
.

Assume

α >− 1

W∗ .

ThenJ is strictly convex,Fix(#) reduces to a singleton{µ∗} and limt→∞µt = µ∗ almost surely. If we
furthermore assume that Hypothesis1.2holds, thenµ∗ = λ.

Sketch of proof. –The Hessian ofJ is definite positive forα >−1/W∗. ✷
If α � −1/W∗ the functionalJ may have several critical points.

THEOREM 2.4. – Letµ∗ ∈ Fix(#). Assume thatf ∗ =Gµ∗ is a non-degenerate critical point ofJ . Then

P

(
lim
t→∞µt = µ∗)> 0

if and only iff ∗ is a local minimum ofJ .

A consequence of this result is the following “localization” theorem.

THEOREM 2.5. – Suppose that both Hypotheses1.1and1.2hold. Let

ρ(V )= sup
{〈Vg,g〉L2(λ) : g ∈ L2(λ), 〈g,1〉L2(λ) = 0, ‖g‖L2(λ) = 1

}
.

Then

P

(
lim
t→∞µt = λ

)
> 0

if 1+ αρ(V ) > 0; and

P

(
lim
t→∞µt = λ

)
= 0

if 1+ αρ(V ) < 0.

Sketch of the proof. –The condition 1+ 2αρ(V ) �= 0 makesGλ a non-degenerate critical point ofJ.
Such a critical point is a local minimum provided 1+ 2αρ(V ) > 0. ✷
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