C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541-544

Probabilités/Probability Theory

On self attracting/repelling diffusions

Michel Benaim^a, Olivier Raimond^b

^a Université de Cergy Pontoise, mathématiques, 2, av. A. Chauvin, 95302 Cergy Pontoise, France
 ^b Université Paris-Sud, mathématiques, bâtiment 425, 91405 Orsay, France

Received 21 May 2002; accepted 28 June 2002

Note presented by Yves Meyer.

Abstract We present an almost sure ergodic theorem for a class of self-interacting diffusions on a compact Riemannian manifold. *To cite this article: M. Benaim, O. Raimond, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541–544.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Diffusions auto attractives/repulsives

Résumé Nous présentons un résultat de type théorème ergodique presque sûr pour une classe de diffusions *inter-agissantes* sur une variété Riemanienne compacte. *Pour citer cet article : M. Benaim, O. Raimond, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541–544.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

A *self interacting diffusion* is a continuous time stochastic process living on a compact connected Riemannian manifold M which can be typically described as a solution to a stochastic differential equation (SDE) of the form

$$dX_t = \sum_i F_i(X_t) \circ dB_t^i - \frac{\alpha}{2t} \left(\int_0^t \nabla V_{X_s}(X_t) \, ds \right) dt, \tag{1}$$

where $(B^i)_i$ is a family of independent Brownian motions, $(F_i)_i$ is a family of smooth vector fields on M such that $\sum_i F_i(F_i f) = \Delta f$ (for $f \in C^{\infty}(M)$) where Δ denotes the Laplacian on M, and $(u, x) \in M \times M \mapsto V_u(x) \in \mathbb{R}$ is a smooth (at least C^3) "potential". The parameter α is real and measures the strength of the interaction.

Such a process is characterized by the fact that the drift term in Eq. (1) depends both on the position of the process and its empirical occupation measure:

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} \,\mathrm{d}s. \tag{2}$$

In [2] it is shown that the asymptotic behavior of $\{\mu_t\}$ can be precisely described in terms a certain deterministic semi-flow $\Psi = \{\Psi_t\}_{t \ge 0}$ defined on the space of Borel probability measures on M. For instance, there are situations (depending on the shape of V) in which $\{\mu_t\}$ converges almost surely to

E-mail addresses: benaim@math.u-cergy.fr (M. Benaim); Olivier.Raimond@math.u-psud.fr (O. Raimond).

^{© 2002} Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02485-8/FLA

M. Benaim, O. Raimond / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541-544

an equilibrium point μ^* of Ψ and other situations where the limit set of $\{\mu_t\}$ coincides almost surely with a periodic orbit for Ψ (see the examples in Section 4 of [2]).

The purpose of this note is to announce new results showing that for a certain class of potentials, $\{\mu_t\}$ converges almost surely (up to a change of variable) to the critical set of an "energy" function. This encompasses most of the examples considered in [2] and enlightens the results of [2]. It also allows to give a sensible definition of *self-attracting* or *repelling* diffusions. In particular, we can show that under a natural assumption (Hypothesis 1.2 below) there is a critival value $\alpha_c < 0$ such that $\mathbb{P}(\mu_t \to \lambda) > 0$ for $\alpha > \alpha_c$ and $\mathbb{P}(\mu_t \to \lambda) = 0$ for $\alpha < \alpha_c$; where λ stands for the Riemannian probability on M.

While some of the proofs are sketched here, the details will be given in [3].

1. Hypotheses

The main assumption is the following:

HYPOTHESIS 1.1 (Standing assumption). – There exists a compact space C, a Borel probability measure ν over C, a continuous function $G: C \times M \to \mathbb{R}$, and a real number β such that

$$V(x, y) = \int_C G(u, x)G(u, y)\nu(\mathrm{d}u) + \beta.$$

A process (1) satisfying 1.1 will be called *self-attracting* for $\alpha \leq 0$ and *self-repelling* otherwise. We sometime use the following additional hypothesis:

HYPOTHESIS 1.2 (Occasional assumption). - The mapping

$$V\lambda : x \mapsto V\lambda(x) = \int_M V(x, y)\lambda(dy)$$

is constant.

This later condition has the interpretation that if the empirical occupation measure of X_t is (close to) λ then the drift term in (1) is (close to) zero. In other words, if the process has visited M "uniformly" between times 0 and t, then it has no preferred directions and behaves like a Brownian motion.

Several examples of potentials satisfying Hypotheses 1.1 and 1.2 are given in [3].

Remark. – The class of potential verifying Hypothesis 1.1 belong to a more general class introduced by Ben Arous and Brunaud in [4].

2. Statement of main results

Let $\mathcal{M}(M)$ denote the space of bounded Borel measures on M. For $\mu \in \mathcal{M}(M)$ we let $G\mu \in C^0(C)$ denote the function defined by

$$G\mu(u) = \int_{M} G(u, x)\mu(\mathrm{d}x).$$
(3)

If $g \in L^2(\lambda)$ we write Gg for $G(g\lambda)$, where $g\lambda$ stands for the measure whose Radon–Nikodym derivative with respect to λ is g. Associated to G is the operator $G^* : L^2(\nu) \to L^2(\lambda)$, defined by

$$G^*f(x) = \int_C G(u, x)f(u)\nu(\mathrm{d}u). \tag{4}$$

Let $\mathcal{M}_0(M) \subset \mathcal{M}(M)$ be the set consisting of measures μ such that $\mu(M) = 0$ and let $\mathcal{H} \subset L^2(\nu)$ denote the closure of $G(\mathcal{M}_0(M))$ in $L^2(\nu)$. Then \mathcal{H} (equipped with the $L^2(\nu)$ topology) is an Hilbert space. Define \mathcal{B} to be the Hilbert affine space parallel to \mathcal{H} containing $G\lambda$:

$$\mathcal{B} = \left\{ f \in \mathcal{L}^2(\nu) : f - G\lambda \in \mathcal{H} \right\}.$$

To cite this article: M. Benaim, O. Raimond, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 541-544

DEFINITION 2.1. – The "energy function" associated to the data $((C, \nu), G, \alpha)$ is the functional $J : \mathbb{B} \to \mathbb{R}$ defined by

$$J(f) = \frac{1}{2} \|f\|_{L^{2}(\nu)}^{2} + \frac{1}{\alpha} \log \left[\int_{M} e^{-\alpha (G^{*}f)(x)} \lambda(dx) \right].$$
(5)

We let

$$\operatorname{crit}(J) = \left\{ f \in \mathcal{B} : \nabla J(f) = 0 \right\}$$

denote the critical set of J.

Let $\mathcal{P}(M) \subset \mathcal{M}(M)$ be the set of Borel probabilities over M, equipped with the topology of weak* convergence. The *limit set* of $\{\mu_t\}$ denoted $L(\{\mu_t\})$ is the set of limits (in $\mathcal{P}(M)$) of convergent sequences $\{\mu_{tk}\}, t_k \to \infty$.

The following theorem describes $L(\{\mu_t\})$ in terms of crit(J).

THEOREM 2.1. – Assume Hypothesis 1.1. Then the following properties hold with probability one: (i) $L({\mu_t})$ is a compact connected subset of $\mathcal{P}(M)$.

(ii) Let $\mu \in L(\{\mu_t\})$. Then μ has a smooth (\mathbf{C}^k if V is \mathbf{C}^k) density with respect to λ characterized by

$$f = G\mu \in \operatorname{crit}(J)$$

and

$$\frac{\mathrm{d}\mu}{\mathrm{d}\lambda} = \xi(\alpha G^* f)$$

where $\xi : C^0(M) \to C^0(M)$ is the function defined by

$$\xi(f)(x) = \frac{\mathrm{e}^{-f(x)}}{\int_M \mathrm{e}^{-f(y)}\lambda(\mathrm{d}y)}.$$
(6)

Given $\mu \in \mathcal{P}(M)$ let $\Pi(\mu)$ denote the Borel probability measure absolutely continuous with respect to λ whose Radon–Nikodym density is

$$\frac{\mathrm{d}\Pi(\mu)}{\mathrm{d}\lambda} = \xi(\alpha V\mu),\tag{7}$$

where $V\mu$ is defined like $G\mu$ with V instead of G. Since $\xi(\alpha V\mu) = \xi(\alpha G^*G\mu)$, Theorem 2.1 can be rephrased as follows:

COROLLARY 2.2. – With probability one $L(\{\mu_t\})$ is a compact connected subset of $Fix(\Pi) = \{\mu \in \mathcal{P}(M) : \mu = \Pi(\mu)\}.$

Sketch of the proof of Theorem 2.1. – The vector field F defined on $\mathcal{M}(M)$ by $F(\mu) = -\mu + \Pi(\mu)$ induces a continuous semi-flow $\{\Psi_t\}$ on $\mathcal{P}(M)$ (see Section 3 in [2]). By Theorem 3.8 in [2] $L = L(\{\mu_t\})$ is almost surely an *attractor free set* for Ψ . In other words, it is a compact invariant set for Ψ and $\Psi|L$ (Ψ restricted to L) is a *chain-transitive flow* in the sense of Conley [5]. Now let $\Phi = \{\Phi_t\}$ be the local flow induced by the vector field $X = -\nabla J$. The change of variable $f = G\mu$ shows that $G \circ \Psi_t = \Phi_t \circ G$. Hence G(L) is a compact invariant set for Φ and $\Phi|G(L)$ is chain-transitive. The last step is the observation that $X = -\nabla J$ is a Fredholm vector field (*see* [6]). Thus, by a theorem of Tromba [6] (extending Sard's lemma to functionals whose gradient is Fredholm) the set of critical values of J has empty interior. This implies that any chain-transitive set for Φ consists of critical points (see Proposition 6.4 of [1]). \Box

With Theorem 2.1 in hands, it is now clear that our description of self-interacting diffusions (satisfying Hypothesis 1.1) on M relies on our understanding of the critical point structure of J. A first step in this direction is the observation that J is convex for α large enough.

THEOREM 2.3. - Let

$$W^* = \sup_{x, y \in M} \left(\frac{V(x, x) + V(y, y)}{2} - V(x, y) \right).$$

Assume

$$\alpha > -\frac{1}{W^*}.$$

Then J is strictly convex, $Fix(\Pi)$ reduces to a singleton $\{\mu^*\}$ and $\lim_{t\to\infty} \mu_t = \mu^*$ almost surely. If we furthermore assume that Hypothesis 1.2 holds, then $\mu^* = \lambda$.

Sketch of proof. – The Hessian of *J* is definite positive for $\alpha > -1/W^*$. \Box

If $\alpha \leq -1/W^*$ the functional J may have several critical points.

THEOREM 2.4. – Let $\mu^* \in Fix(\Pi)$. Assume that $f^* = G\mu^*$ is a non-degenerate critical point of J. Then

$$\mathbb{P}\left(\lim_{t\to\infty}\mu_t=\mu^*\right)>0$$

if and only if f^* is a local minimum of J.

A consequence of this result is the following "localization" theorem.

THEOREM 2.5. – Suppose that both Hypotheses 1.1 and 1.2 hold. Let

$$\rho(V) = \sup\left\{ \langle Vg, g \rangle_{L^2(\lambda)} : g \in L^2(\lambda), \ \langle g, 1 \rangle_{L^2(\lambda)} = 0, \ \|g\|_{L^2(\lambda)} = 1 \right\}$$

Then

$$\mathbb{P}\left(\lim_{t\to\infty}\mu_t=\lambda\right)>0$$

if $1 + \alpha \rho(V) > 0$; and

$$\mathbb{P}\Big(\lim_{t\to\infty}\mu_t=\lambda\Big)=0$$

if $1 + \alpha \rho(V) < 0$.

Sketch of the proof. – The condition $1 + 2\alpha\rho(V) \neq 0$ makes $G\lambda$ a non-degenerate critical point of *J*. Such a critical point is a local minimum provided $1 + 2\alpha\rho(V) > 0$. \Box

Acknowledgements. We thank Gerard Ben-Arous, Thierry Coulhon, Morris W. Hirsch and Hans H. Rugh for their useful comments and suggestions.

References

- M. Benaïm, Dynamics of stochastic approximation algorithms, in: Séminaire de Probabilités XXXIII, in: Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 1–68.
- [2] M. Benaïm, M. Ledoux, O. Raimond, Self-interacting diffusions, Probab. Theory Related Fields 122 (2002) 1-41.
- [3] M. Benaïm, O. Raimond, Self-interacting diffusions III: The gradient case, in preparation.
- [4] G. Ben Arous, M. Brunaud, Méthode de Laplace : étude variationnelle des fluctuations de type champ moyen, Stochastic 31 (1990) 79–144.
- [5] C.C. Conley, Isolated Invariant Sets and the Morse Index, in: CBMS Regional Conf. Ser. in Math., Vol. 38, American Mathematical Society, Providence, 1978.
- [6] A.J. Tromba, The Morse–Sard–Brown theorem for functionals and the problem of Plateau, Amer. J. Math. 99 (6) (1977) 1251–1256.