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Abstract We prove the existence of a threshold phenomenon regarding the random 3-XORSAT
problem (or more generally k-XORSAT). We provide the value of the threshold as the
solution of two transcendental equations. These results confirm rigorously those obtained
by physicists using the one-step replica symmetry breaking method and thus give for the
first time the proof of the validity of this method for a problem of the class of satisfiability
problems. To cite this article: O. Dubois, J. Mandler, C. R. Acad. Sci. Paris, Ser. I 335
(2002) 963–966.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Le seuil de 3-XORSAT

Résumé Nous démontrons l’existence d’un phénomène de seuil pour le problème 3-XORSAT
aléatoire (et plus généralement k-XORSAT). Nous fournissons la valeur du seuil comme
solution de deux équations transcendantes. Ces résultats confirment rigoureusement ceux
obtenus par des physiciens au moyen de la méthode des répliques à un pas de brisure de
symétrie et apportent ainsi pour la première fois une preuve de la validité de la méthode des
répliques avec brisure sur un problème de la classe des problèmes de satisfaisabilité. Pour
citer cet article : O. Dubois, J. Mandler, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 963–966.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. The 3-XORSAT (more generally, k-XORSAT) problem is a variant of the satisfiability problem in
which a clause of length 3 is said to be satisfied iff the exclusive-OR of the values of its literals is 1. Using
the fact that the exclusive-OR is just addition modulo 2 and that complementing is just adding 1 modulo 2,
it is easy to see that a 3-XORSAT formula can be identified with a system of linear equations on F2, each
equation having exactly 3 variables.

Let �m,n be the set of 3-XORSAT formulae over a set of n variables (not necessarily all present within
each formula), comprising exactly m clauses with m = cn(1 + o(1)) as n → ∞. Experiments suggest
the existence of a satisfiability threshold c0, close to 0.92, such that for c < c0 [resp. c > c0], almost
all formulae in �m,n are satisfiable [resp. unsatisfiable] [2]. Let �m,n be the set of 3-XORSAT formulae
withm equations in n variables, having each at least two occurrences, endowed with the uniform probability
distribution. We first show that satisfiability in�m,n has, with respect to the parameter c∼m/n, a threshold
located exactly at c= 1. In the precise model which we adopt, a formula in�m,n is considered to be ordered
and each clause in a formula is also considered to be ordered.
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THEOREM 1. – For m = (1 + o(1))cn with c < 1 [resp. c > 1], almost all formulae in �m,n are
satisfiable [resp. unsatisfiable].

To show that for c > 1 almost all formulae in�m,n are unsatisfiable is a straightforward application of the
first moment method, since the expected number E(N) of solutions of a random formula ω ∈�m,n is 2m−n
(as in the case of �m,n). To show that for c < 1 almost all formulae in �m,n are satisfiable is a much more
involved application of the second moment inequality: Pr(N > 0)� E(N)2/E(N2). The second moment
is the quotient of the number of formulae satisfied by a given pair of truth assignments to the variables,
summed over the assignment pairs, to the total number of formulae. We take as parameters the proportion α
of variables having the same value in both assignments, and the proportion r of the 3m places in a random
ordered formula which receive one of these αn variables. The r.h.s. of the system is irrelevant, providing we
impose as a compatibilty condition that each equation comprises either 3 variables with the same value in
both assignments, i.e., 3 of the αn variables, or 2 variables each with different values in both assignments,
i.e., 2 of the (1 − α)n variables, and a third one with the same value, i.e., 1 of the αn variables. Setting
In = {0,1/n,2/n, . . . ,1} this leads to
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where S(p,q,2) is the level-2 generalized Stirling number of the second kind, or the number of partitions of
q objects into p subsets having each at least two elements, and #F is the total number of formulae in �m,n,
that is : #F = 2mS(3m,n,2)n!. Using an asymptotic estimate for S(p,q,2) which has been established
in [6], we can show that the exponential order of E(N2) is bounded by {maxα∈[0,1],r∈[1/3,1] exp[f (α, r)]}n,
with

f (α, r)= (1 − c) ln 2 − α lnα − (1 − α) ln(1 − α)+ α ln
(
ex2 − 1 − x2

) − 3rc lnx2
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)
the xi being given implicitly by (qi/pi)xi = (exi − 1 − xi)/(e

xi − 1), where p0 = 3m, q0 = n, p1 =
r3m, q1 = αn, p2 = (1 − r)3m, and q2 = (1 − α)n. Analytical and algebraic manipulations allow an
explicit investigation of all stationary points of f, with the conclusion that the only local maximum is
at (1/2,1/2) where f evaluates to 2(1 − c) ln 2. Knowing this, the ratio E(N2)/E(N)2, written in the form
E(N2)/E(N)2 ∼ (1/n)

∑n
j=0

∑3m
l=m g(j/n, l/(3cn)) exp(n h(j/n, l/(3cn))), where h(α, r) = f (α, r) −

2(1 − c) ln 2, can be studied by a discrete bidimensional Laplace method, giving E(N2)

E(N)2
∼ g(1/2,1/2) 3cπ√

D
.

Here D is the determinant of the Hessian matrix of h at (1/2,1/2), found to equal 16x0/(1 − R)

with R = x0e
x0/(ex0 − 1)2, while using exact asymptotic equivalents for all quantities involved yields

g(1/2,1/2)= 4/π[x0(3c− 1)− 3c(3c− 2)]−1/2. It follows from the expressions of D and g(1/2,1/2),
and the equation for x0, that D = (3cπ)2 g(1/2,1/2)2, so that E(N2)/E(N)2 equals 1 in the limit, giving
the required lower bound of 1 for the probability of satisfiability.

2. In a combinatorial approach, we can then analyze the following algorithm (with a satisfiability-
preserving main loop) acting on a random formula ω ∈�m,n.

ALGORITHM A:
while ω contains literals with a single occurrence do
Let π = {All single-occurrence literals in ω}
Remove from ω all clauses containing a literal from π;
od
if ω= ∅ or the formula has fewer clauses than effectively present variables then Success else Failure.
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To study Algorithm A, let us denote by !m,n,p the (uniformly probabilized) space of formulae with
m equations in n effectively present variables, p of which have a single occurrence. Further, in a
random formula F from �n,m, let the r.v.’s n̄ and p̄ denote, respectively, the numbers of effectively
present, and single-occurrence variables. We show that, conditionally on the values of n̄ and p̄, F is
uniformly distributed in !m,n̄,p̄, and then, for any fixed δ ∈]1/2,1[ , by a large-deviation analysis, that
q.s. (quite surely, see [1]): n̄ = n(1 − exp(−3m/n)) + O(nδ), p̄ = 3m exp(−3m/n) + O(nδ). Also, we
prove maintenance of uniformity at each step: if an iteration of Algorithm A sends a random formula of
!m,n,p to a formula in!m′,n′,p′, then the latter is also random, conditionally on the values of m′, n′ and p′.

Regard, then, the ith iteration of Algorithm A as sending a random element of !mi,ni ,pi to one of
!mi+1,ni+1,pi+1, with m1 =m,n1 = n̄, p1 = p̄. Let ci be the q.s. limit of mi/ni. Our main result is then:

THEOREM 2. – Define fc(x) = 1/(3(1 − √
3c/x(e−x − 1 + x)/x)) and gc(λ) = 3c(1 − e−λ)2. Then,

for any i � 1, ci = fc(g
(i−1)
c (3c)), where the superscript denotes iterated composition.

Theorem 2, together with Theorem 1, implies the existence of the 3-XORSAT threshold and gives its
value. Indeed, since gc(3c) < 3c, the iterates g(i−1)

c (3c) tend to the largest fixed-point λ̃c of gc . There
is exactly one value c0 of c such that fc(λ̃c) = 1. (It so happens that c0 is also the unique c such that
maxx fc(x)= 1.) For c < c0, the maximum of f is < 1 anyway, so for large n Algorithm A almost surely
answers Success, and a.e. formula in �n,m is satisfiable. For c > c0, fc(λ̃c) > 1, so similarly a.e. formula
is unsatisfiable. Thus:

THEOREM 3. – The 3-XORSAT satisfiability threshold is the value of c in the unique solution (c0, λ̃)

with λ̃ �= 0 to the system gc(λ)= λ, fc(λ)= 1.

Up to the change of unknown u = √
λ/(3c), this system is the same as that in [3], giving absolute

confirmation of the validity of the replica symmetry breaking method as applied to the XORSAT problem.
To prove Theorem 2, we first analyze the general step as in [1]. Using a generalized form of

Poissonization, occurrences of variables in formulae of !m,n,p are seen to be ‘concentrated around left-
truncated Poisson means’ in the sense that the number νk of variables having k occurrences in a random

formula ω ∈!m,n,p is, for 2 � k � logn, almost surely given by νk = (n−p)λ̂k/((eλ̂− 1 − λ̂)k!)+ O(nδ),

with λ̂ defined by λ̂(eλ̂ − 1)/(eλ̂ − 1 − λ̂) = (3m − p)/(n − p). We combine this with concentration
inequalities and counting arguments, to the effect that

THEOREM 4. – Suppose that ω is chosen uniformly from !m,n,p, with m,p > nδ, and all clauses
containing single-occurrence variables are deleted, giving the formula ω′ ∈ !m′,n′,p′ . Then q.s. m′ =
m(1 − α)3 + O(nδ), n′ = (n − p)(1 − β) + O(nδ), p′ = (n − p)γ + O(nδ), where α = p/(3m) is the
probability that a random literal in ω occurs only once, and where, denoting τ = exp((2α− α2)λ̂)− 1, we

set β = 1/(eλ̂ − 1 − λ̂) (τ − (2α− α2)λ̂) and γ = λ̂/(eλ̂ − 1 − λ̂) (1 − α)2τ.

Denoting by λ̂i the value of λ̂ (in the large n limit) at step i, we then show, by induction on i, that the

large-n q.s. limits ofmi/n,ni/n, and pi/n are λ̂i (1− e−λ̂i−1)/3, 1− e−λ̂i − λ̂ieλ̂i−1, and λ̂i (e−λ̂i − e−λ̂i−1),

respectively, and in doing so we obtain the relation λ̂i+1 = (1 − αi)
2λ̂i with αi the limit of pi/(3mi).

Observing that 1 − αi = (1 − e−λ̂i )/(1 − e−λ̂i−1) and therefore that λ̂i+1/(1 − e−λ̂i )2 is a constant,
Theorem 2 follows.

3. Additionally, as suggested by Monasson [4], we show that the analytical equations of Theorem 3 can
also be derived by differential calculus methods, using a theorem of Wormald [7]. We obtain the equations
in c,u version, namely 1 − u = exp(−3cu2), cu3 = u− 3cu2(1 − u). We analyze a modified version of
Algorithm A, where at each step a single clause is picked randomly among those containing a single-
occurrence variable, then removed. We follow the evolution in ‘time’, T , of the random variables nj (T )
and m(T ) equal, respectively, to the number of variables with j occurrences and the number of clauses at
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iteration T . We focus on n0 and n1. The total number of variables, n, is now considered a constant, while
n0 continually increases. Using the concentration of the nj ’s (j � 2) around truncated Poisson means, it is
observed that, conditional on the current state, the expected variations of n0, n1, andm during the (T +1)st
step of the algorithm are fi(T /n,n0/n,n1/n,m/n) for i = 0,1,2, repectively, where, on a suitable domain
D ⊂ R

4,

f0(t, y0, y1, y2)= 1 + 2y1

3y2
,

f1(t, y0, y1, y2)= −1 − 2y1

3y2
+ 2

(
1 − y1

3y2

)
φ(t, y0, y1, y2)

exp(φ(t, y0, y1, y2))− 1
,

f2(t, y0, y1, y2)= −1,

φ being defined implicitly onD by: (φ(t, y0, y1, y2))
−1− (eφ(t,y0,y1,y2) − 1)−1 = (1 − y0 − y1)/(3y2 − y1).

The fi ’s are seen to be Lipschitz onD, so by Wormald’s theorem, almost surely and uniformly for 0 � T <

Ts (Ts being the stopping time of the algorithm, when n1 becomes 0), n0(T ), n1(T ) and m(T ) are equal to
(zj (T /n)+o(1))n,with respectively j = 0,1,2; and zj (t) being the unique solution inD of the differential
system {dzj /dt = fj (t, z0, z1, z2)} subject to the initial conditions zj (0)= nj (0)/n+o(1)= e−3c(3c)j/j !,
for j = 0,1, and z2(0) = m(0)/n = c. Setting 1(t) = c − t , u(t) = [1(t)/c]1/3 = (1 − t/c)1/3, and
γ (t) = 3cu(t)2, we show, by direct substitution, that the solution of this differential system is z2 = 1 ,
z1 = γ (u − 1 + e−γ ), z0 = (1 + γ )e−γ − z1, and that the largest semi-open interval to which this so-
lution can be extended is [0, ts[, with ts the uniform limit of Ts/n as n → ∞. Since n1(Ts − 1) = 1,
we then have limn→∞ z1(Ts/n − 1/n) = limn→∞ 1/n = 0, which for the values of c of interest implies
1 − u(ts)− e−3cu(ts)2 = 0. Additionally, from the threshold result for �m(Ts),n−n0(Ts) and the satisfiability-
preserving loop in the algorithm, it is seen that the unique real number c0 below [resp. above] which the
final c = m(Ts)/[n − n0(Ts)] is < 1 [resp. > 1], is indeed a threshold for 3-XORSAT, and that further
1(ts) − 1 + (1 + γ (ts))e

−γ (ts) is � 0 or � 0, according as c < c0 or c > c0. This means that, setting
t0 = infc<c0 ts = supc>c0

ts, the unique non-trivial solution of the above equations in c,u consists of c0 and
u0 = u(t0). (The expressions obtained here agree exactly with those in 2.)

In conclusion, work like this one underlines the importance of foundational studies into the replica
method, such as those of M. Talagrand (see his forthcoming book [5]).
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