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Abstract Under suitable assumptions @&, we show that, fore > 0 small andk large enough,
problem (1) below has solutions which concentrate and blow-up -as0 at exactlyk
points; the blowing-up points approaél®2 ask — oo; the number of solutions tends to
infinity ase — 0. These assumptions allo® to be contractible and even arbitrarily close
to starshaped domain®o cite this article: R. Molle, D. Passaseo, C. R. Acad. Sci. Paris,
Ser. | 335 (2002) 1029-1032.
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Equations elliptiques non linéaire avec non-linéarité critique en
ouverts presque étoilés

Résumé On montre que, si2 satisfait certaines conditions, le probléme (1) ci-dessous, poud
suffisamment petit ek grand, admet des solutions qui pour— 0 se concentrent et
explosent exactement dnpoints; les points de concentration s’approchent du bord de
Q quandk — oco; le nombre de solutions est arbitrairement grand pourvu gjseit
suffisamment petit. Parmi les ouverts borégui satisfont ces conditions il y en a aussi de
contractibles, qui peuvent méme étre arbitrairement proches de ouverts &ilésiter
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Let us consider the problem

—Au=uy"tI/0=D _ o inQ,
(1)
u>0 inQ, u=0 o0ndQ,

wheref is a bounded domain &”, n > 3, ande is a real parameter. It is well known that, as a consequence
of the Pohozaev’s identity (see [15]), there exists no solutiohig starshaped and> 0.

Fore = 0, the existence of solutions is proved (see [1]) in domains with nontrivial topology (in the sense
that suitable homology groups are nontrivial). Notice that this nontriviality condition is only sufficient for
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the existence of solutions but not necessary since existence results hold also in some contractible domains
(see [5,7,12)).

The case < 0 has been firstly considered in [3];Af> 4, for anyQ2 (even starshaped) it is proved the
existence of solutions for adl € ]—A1, O[, wherei1 denotes the first eigenvalue fA in H%(Q) (ifn=3
the problem is more complex). When— 0, these solutions tend to concentrate as Dirac masses at special
points of 2 (see [4,8,17]). Exploiting this concentration phenomena, it is possible to relate the number of
solutions to the topology a2, whene < 0 is small enough. For exampleif> 5, the existence of at least
as many solutions as the Ljusternik—Schnirelmann catega®jisproved in [16] (an improved multiplicity
result, which holds also it = 4, is obtained in [13]).

In this Note we are concerned with the case 0. We give sufficient conditions of2, which guarantee
that the following property holds: fot large ands > 0 small enough, problem (1) has solutions which
concentrate and blow-up at exacllypoints ase — 0. Thus, in domains satisfying these conditions, the
number of geometrically distinct solutions tends to infinityeas- 0 from above (while the problem may
have no solution foe = 0). Let us point out that these results hold also in bounded contractible domains,
which (unlike the case considered in [5,7,12]) are not required to be close to nontrivial domains; indeed
they may be even arbitrarily close to starshaped domains in the sense specified below.

For any smooth bounded domanof R”, let us set

o(Q) = supinf{v(x)~ * X0 :xEBQ}, )

X0€Q |x — xol

wherev(x) denotes the outward normald®. It is natural to say tha® is a “nearly starshaped” domain if
o (2)” =max0, —o ()} is small (a different definition of nearly starshaped domain is used in [6]).
The results we present in this Note prove, in particular, the following proposition (see Example 1).

PROPOSITION 1. — For any u > O there exists a smooth bounded domain Q such that o (2) € 1—u, O[
and problem (1) has solutions for ¢ > 0 small enough. Moreover, the number of geometrically distinct
solutionstendsto infinity ase — 0.

In order to prove this proposition, we consider domains satisfying the following conditions

(X1, X2, ..., x0) EQ (\/xf%—x%,o,xg,...,x,,)eQ, 3)

(X1, o s Xjy oo X)) €EQ = (X1,..., —Xi,...,xp)€Q fori=3,....n—-1 4)

and, exploiting these symmetry properties, we look for solutions of the form
h ke
e = ot =27 ’ 0 (0), 5)
8 | | ; (Mf,g +1x — & k|22 €

wheref; . — 0 ase — 0, g . > 0 is a concentration parameter and the concentration pgintshave the
form

Eike = (ke COX27 [ k)i, pr,e SIN27 /)i, 0,...,0, 1) fori=1,... k. (6)
The following theorems are proved in [10].

THEOREM 1. — Let Q be a smooth bounded domain of R”, n > 5, satisfying conditions (3) and (4).
Assume that there exist p1, p2, p3 and 11, 72, 73 in R such that 71 < 12 < 13, maxp1, p3} < p2, L
contains (p1,0,...,0,71) and (p3,0,...,0,t3) while (p2,0,...,0,172) ¢ Q. Also assume that there
exists a continuous function y : [r1, 13] — R™ such that y(t1) = p1, y(13) = p3, ¥(12) > p2 and
(y(1),0,...,0,7) € Q Vt € [11, t3]. Then there exist k € N and a sequence (gx)x, ex > O for all k > k,
such that, for all k >k and ¢ € 10, g], problem (1) has at least one solution of the form (5). As ¢ — 0
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and k — oo, thissolution behav&agfollows limg_ o limsup._, odist(§; ¢, 0Q) =0fori =1,...,k and
lims_o Mkygé‘l/(‘l_”) =AM > 0Vk >k, withlimg_ o Ar =0.

THEOREM 2. — Let Q be a smooth bounded domain of R”, n > 5, satisfying conditions (3) and (4). Let
us set

S ={(p,1) eR?:p>0,(p,0,...,0,7) € 2} 7)

and consider the function Ig : R2 — R U {400} defined by
Mo(p,t)=p if(p,7)eS(Q), Mq(p, 1) = 400 oOtherwise. (8)
Assume that there exists an open subset A ¢ R? such that 0 < infs [T < infy4 . Then the same

conclusion of Theorem 1 holds; moreover, limy_, o limsup,_, o dist((ok ¢, Tk,¢), Ma) = 0, where M4 isthe
set of the minimum pointsfor g constrained on A (noticethat M4 C 3S(2) N A).

The proof of Theorems 1 and 2 is based on a finite dimensional reduction method introduced in [2] and
[17] (see also [9,11] and references therein).
Let us consider the functiod, (o, 7, 1) = ®x(p, T)A"~2 + kA2, with

k
Pu(p, 1) =Y HGErE)—2 Y G ©)
i=1 1<i<j<k
where§; x = (pcoS2x/k)i, psin(2r /k)i,0,...,0,7) € Q, G denotes the Green’s function efA in
H%(Q) and H its regular part. Taking into account the symmetry properties (3) and (4), the problem reduces
to finding critical points(p, z, 1) for Wy, with A > 0, which persist with respect to smalt @erturbations.
Clearly, it is equivalent to finding critical pointp, ) for @, with ®;(p, ) < 0, which are stable with
respect to & perturbations.
The following lemma (see [9]) plays a crucial role in the proof of Theorems 1 and 2.

LEMMA 1. - There exists a sequence (cx)x inR, ¢ — 400, such that
i _ . 2-n H i _ _ 2-n

Sr(p,7) =2 —p V(p,7)€S(Q), VkeN and |lim —d(p,1)=—p Y(p, 1) € S(RQ).
Ck k—00 Ck

Moreover, ®;(p, ) — +oo as(p, 1) — (0, 7), for all (p, ) € 3S(Q2) suchthat o > 0.

These properties of the functiaby, allow us to say that, if the assumptions of Theorem 2 are satisfied,
for k large enough there exists a minimum point ff constrained omA N S(2) while, under the
assumptions of Theorem 1, a critical point fbf can be obtained by a mini-max argument. In both cases
the critical points ok, 7¢) we get ford; persist with respect to small@erturbations; moreover, farlarge
enough, they correspond to negative critical values (indeed,.li®; (ox, k) = —00). So they give rise
to solutions of the form (5) withu . satisfying lim. o uy ¥/ 4" = an[—%GDk(pk, 7)]1Y 4" wherea,
is a positive constant depending only on the dimension

Remark 1.— The proof shows also that for the solution obtained under the assumptions of Theorem 2
we have Iirm%oo%dw((pk,rk) = —[miny [Mg]%~", while the solution given by Theorem 1 satisfies
liMg— o0 %‘bk(pk, %) = —p5 "

Example 1. - Forallr > 1,5 > 0 and$ > 0, let us consider the domas‘zé,s ={x e R" : dist(x, Q2,5) <
8}, whereQ, s = {x = (x1,..., x,) € R : 1< x| <r, I xDY2 > sx,). If 8 < s(1+s2)~Y2, then
Q¢ is a contractible smooth bounded domairiR¥f, moreover one can verify that lin_. o o (22 ) =0
for anys € 10, 1[ (note thats < s(1 + s2)~1/2 for s large enough). Thus, in order to prove Proposition 1, it
suffices to observe that,if > 5, both Theorems 1 and 2 apply when= Qf’s and guarantee the existence
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of two k-spike solutions of problem (1) far large ands > 0 small enough. Notice that we have indeed
two distinctk-spike solutions ier,S because (see Remark 1) the solution given by Theorem 2 satisfies

liMs_ oo %GD(,O/{, ) = —[s(1 + s%)~1/2 — §12=", while for the solution given by Theorem 1 we have
im0 - @ (pr. Ti) = —[1— 812"

Remark 2. - Solutions which blow-up as — 0 can be obtained also i = 4; in this case the
concentration parametgg satisfies lim_o 1. expla/e) = b, wherea andb are suitable positive constants.
On the contrary, for = 3 similar concentration phenomena do not occur (at least not wherd).

Remark 3. — Notice that condition (4) is not really necessary for the construction of multispike solutions
of this type. In fact, if we assume only condition (3) and S&€) = {(p, 71, ..., Ts_2) e R"1: p > 0,
O, p, 11,...,T—2) € 2}, then a general result (reported in [10]) relates the existenkespfke solutions,
for k large ande > 0 small enough, to the presence of suitable critical points of the funétipnzs,
..., Tp—2) = —p"~2 constrained ort ().

Remark 4.— If we replace the parameterin problem (1) with a variable coefficient(x), then
Pohozaev’s identity does not give contradiction and the problem may have solutions eReis i&
starshaped domain ardx) > O for all x € Q. In [14] it is proved that, ifa(x) concentrates at a finite
number of points of2, then (independently of the shapey there exist solutions which concentrate and
blow-up at the same points.

References

[1] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the
topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253-294.
[2] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical
points at infinity, Calc. Var. 3 (1) (1995) 67-93.
[3] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,
Comm. Pure Appl. Math. 36 (4) (1983) 437-477.
[4] H. Brézis, L.A. Peletier, Asymptotics for elliptic equations involving critical growth, in: Colombini, Modica,
Spagnolo (Eds.), P.D.E. and the Calculus of Variations, Birkhauser, Basel, 1989, pp. 149-192.
[5] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (6) (1988) 600—602.
[6] E.N. Dancer, K. Zhang, Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped
domains, Nonlinear Anal. 41 (5-6) (2000) 745-761.
[7] W.Y. Ding, Positive solutions ofAu + u+2/(=2 = 0 on contractible domains, J. Partial Differential
Equations 2 (4) (1989) 83-88.
[8] Z.C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev
exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (2) (1991) 159-174.
[9] R. Molle, D. Passaseo, Concentrating solutions of slightly supercritical elliptic equations in symmetric domains,
to appear.
[10] R. Molle, D. Passaseo, to appear.
[11] R. Molle, A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv.
Differential Equations, to appear.
[12] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in
some contractible domains, Manuscripta Math. 65 (2) (1989) 147-165.
[13] D. Passaseo, Multiplicity of positive solutions for the equation+ Au + u%"~1 = 0in noncontractible domains,
Topol. Methods Nonlinear Anal. 2 (2) (1993) 343-366.
[14] D. Passaseo, Some sufficient conditions for the existence of positive solutions to the egqustieha(x)u =
u2" =1 in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (2) (1996) 185-227.
[15] S.I. PohoZaev, On the eigenfunctions of the equatiant A f (1) = 0, Soviet Math. Dokl. 6 (1965) 1408-1411.
[16] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (10) (1989)
1241-1249.
[17] O. Rey, The role of the Green'’s function in a nonlinear elliptic equation involving the critical Sobolev exponent,
J. Funct. Anal. 89 (1) (1990) 1-52.

1032



