Équations aux dérivées partielles/Partial Differential Equations

Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains

Riccardo Molle^a, Donato Passaseo^b

^a Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 1, 00133 Roma, Italy

^b Dipartimento di Matematica "E. De Giorgi", Università di Lecce, P.O. Box 193, 73100 Lecce, Italy

Received 1 October 2002; accepted 25 October 2002

Note presented by Pierre-Louis Lions.

Abstract Under suitable assumptions on Ω , we show that, for $\varepsilon > 0$ small and k large enough, problem (1) below has solutions which concentrate and blow-up as $\varepsilon \to 0$ at exactly k points; the blowing-up points approach $\partial \Omega$ as $k \to \infty$; the number of solutions tends to infinity as $\varepsilon \to 0$. These assumptions allow Ω to be contractible and even arbitrarily close to starshaped domains. *To cite this article: R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029–1032.*

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Équations elliptiques non linéaire avec non-linéarité critique en ouverts presque étoilés

Résumé On montre que, si Ω satisfait certaines conditions, le problème (1) ci-dessous, pour $\varepsilon > 0$ suffisamment petit et k grand, admet des solutions qui pour $\varepsilon \to 0$ se concentrent et explosent exactement en k points; les points de concentration s'approchent du bord de Ω quand $k \to \infty$; le nombre de solutions est arbitrairement grand pourvu que ε soit suffisamment petit. Parmi les ouverts bornés Ω qui satisfont ces conditions il y en a aussi de contractibles, qui peuvent même être arbitrairement proches de ouverts étoilés. *Pour citer cet article*: *R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029–1032.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Let us consider the problem

$$\begin{cases} -\Delta u = u^{(n+2)/(n-2)} - \varepsilon u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega, \end{cases}$$
(1)

where Ω is a bounded domain of \mathbb{R}^n , $n \ge 3$, and ε is a real parameter. It is well known that, as a consequence of the Pohozaev's identity (see [15]), there exists no solution if Ω is starshaped and $\varepsilon \ge 0$.

For $\varepsilon = 0$, the existence of solutions is proved (see [1]) in domains with nontrivial topology (in the sense that suitable homology groups are nontrivial). Notice that this nontriviality condition is only sufficient for

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02614-6/FLA

E-mail address: molle@mat.uniroma2.it (R. Molle).

R. Molle, D. Passaseo / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029-1032

the existence of solutions but not necessary since existence results hold also in some contractible domains (see [5,7,12]).

The case $\varepsilon < 0$ has been firstly considered in [3]; if $n \ge 4$, for any Ω (even starshaped) it is proved the existence of solutions for all $\varepsilon \in]-\lambda_1, 0[$, where λ_1 denotes the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$ (if n = 3 the problem is more complex). When $\varepsilon \to 0$, these solutions tend to concentrate as Dirac masses at special points of Ω (see [4,8,17]). Exploiting this concentration phenomena, it is possible to relate the number of solutions to the topology of Ω , when $\varepsilon < 0$ is small enough. For example, if $n \ge 5$, the existence of at least as many solutions as the Ljusternik–Schnirelmann category of Ω is proved in [16] (an improved multiplicity result, which holds also if n = 4, is obtained in [13]).

In this Note we are concerned with the case $\varepsilon > 0$. We give sufficient conditions on Ω , which guarantee that the following property holds: for k large and $\varepsilon > 0$ small enough, problem (1) has solutions which concentrate and blow-up at exactly k points as $\varepsilon \to 0$. Thus, in domains satisfying these conditions, the number of geometrically distinct solutions tends to infinity as $\varepsilon \to 0$ from above (while the problem may have no solution for $\varepsilon = 0$). Let us point out that these results hold also in bounded contractible domains, which (unlike the case considered in [5,7,12]) are not required to be close to nontrivial domains; indeed they may be even arbitrarily close to starshaped domains in the sense specified below.

For any smooth bounded domain Ω of \mathbb{R}^n , let us set

$$\sigma(\Omega) = \sup_{x_0 \in \Omega} \inf \left\{ \nu(x) \cdot \frac{x - x_0}{|x - x_0|} : x \in \partial \Omega \right\},\tag{2}$$

where $\nu(x)$ denotes the outward normal to $\partial \Omega$. It is natural to say that Ω is a "nearly starshaped" domain if $\sigma(\Omega)^- = \max\{0, -\sigma(\Omega)\}$ is small (a different definition of nearly starshaped domain is used in [6]).

The results we present in this Note prove, in particular, the following proposition (see Example 1).

PROPOSITION 1. – For any $\mu > 0$ there exists a smooth bounded domain Ω such that $\sigma(\Omega) \in]-\mu, 0[$ and problem (1) has solutions for $\varepsilon > 0$ small enough. Moreover, the number of geometrically distinct solutions tends to infinity as $\varepsilon \to 0$.

In order to prove this proposition, we consider domains satisfying the following conditions

$$(x_1, x_2, \dots, x_n) \in \Omega \quad \Longleftrightarrow \quad \left(\sqrt{x_1^2 + x_2^2}, 0, x_3, \dots, x_n\right) \in \Omega,$$
(3)

$$(x_1, \dots, x_i, \dots, x_n) \in \Omega \quad \iff \quad (x_1, \dots, -x_i, \dots, x_n) \in \Omega \quad \text{for } i = 3, \dots, n-1 \tag{4}$$

and, exploiting these symmetry properties, we look for solutions of the form

$$u_{k,\varepsilon}(x) = \left[n(n-2)\right]^{(n-2)/4} \sum_{i=1}^{k} \frac{\mu_{k,\varepsilon}^{(n-2)/2}}{(\mu_{k,\varepsilon}^2 + |x - \xi_{i,k,\varepsilon}|^2)^{(n-2)/2}} + \theta_{k,\varepsilon}(x),\tag{5}$$

where $\theta_{k,\varepsilon} \to 0$ as $\varepsilon \to 0$, $\mu_{k,\varepsilon} > 0$ is a concentration parameter and the concentration points $\xi_{i,k,\varepsilon}$ have the form

$$\xi_{i,k,\varepsilon} = \left(\rho_{k,\varepsilon}\cos(2\pi/k)i, \rho_{k,\varepsilon}\sin(2\pi/k)i, 0, \dots, 0, \tau_{k,\varepsilon}\right) \quad \text{for } i = 1, \dots, k.$$
(6)

The following theorems are proved in [10].

THEOREM 1. – Let Ω be a smooth bounded domain of \mathbb{R}^n , $n \ge 5$, satisfying conditions (3) and (4). Assume that there exist ρ_1, ρ_2, ρ_3 and τ_1, τ_2, τ_3 in \mathbb{R} such that $\tau_1 < \tau_2 < \tau_3$, $\max\{\rho_1, \rho_3\} < \rho_2$, Ω contains $(\rho_1, 0, \ldots, 0, \tau_1)$ and $(\rho_3, 0, \ldots, 0, \tau_3)$ while $(\rho_2, 0, \ldots, 0, \tau_2) \notin \Omega$. Also assume that there exists a continuous function $\gamma : [\tau_1, \tau_3] \to \mathbb{R}^+$ such that $\gamma(\tau_1) = \rho_1$, $\gamma(\tau_3) = \rho_3$, $\gamma(\tau_2) > \rho_2$ and $(\gamma(\tau), 0, \ldots, 0, \tau) \in \Omega \ \forall \tau \in [\tau_1, \tau_3]$. Then there exist $\overline{k} \in \mathbb{N}$ and a sequence $(\varepsilon_k)_k$, $\varepsilon_k > 0$ for all $k \ge \overline{k}$, such that, for all $k \ge \overline{k}$ and $\varepsilon \in]0, \varepsilon_k]$, problem (1) has at least one solution of the form (5). As $\varepsilon \to 0$

To cite this article: R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029-1032

and $k \to \infty$, this solution behaves as follows: $\lim_{k\to\infty} \limsup_{\varepsilon\to 0} \operatorname{dist}(\xi_{i,k,\varepsilon}, \partial\Omega) = 0$ for $i = 1, \ldots, k$ and $\lim_{\varepsilon\to 0} \mu_{k,\varepsilon} \varepsilon^{1/(4-n)} = \lambda_k > 0 \ \forall k \ge \overline{k}$, with $\lim_{k\to\infty} \lambda_k = 0$.

THEOREM 2. – Let Ω be a smooth bounded domain of \mathbb{R}^n , $n \ge 5$, satisfying conditions (3) and (4). Let us set

$$S(\Omega) = \left\{ (\rho, \tau) \in \mathbb{R}^2 : \rho > 0, (\rho, 0, \dots, 0, \tau) \in \Omega \right\}$$
(7)

and consider the function $\Pi_{\Omega} : \mathbb{R}^2 \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\Pi_{\Omega}(\rho,\tau) = \rho \quad if(\rho,\tau) \in \overline{S(\Omega)}, \qquad \Pi_{\Omega}(\rho,\tau) = +\infty \quad otherwise.$$
(8)

Assume that there exists an open subset $A \subset \mathbb{R}^2$ such that $0 < \inf_A \Pi_\Omega < \inf_{\partial A} \Pi_\Omega$. Then the same conclusion of Theorem 1 holds; moreover, $\lim_{k\to\infty} \limsup_{\varepsilon\to 0} \operatorname{dist}((\rho_{k,\varepsilon}, \tau_{k,\varepsilon}), M_A) = 0$, where M_A is the set of the minimum points for Π_Ω constrained on A (notice that $M_A \subset \partial S(\Omega) \cap A$).

The proof of Theorems 1 and 2 is based on a finite dimensional reduction method introduced in [2] and [17] (see also [9,11] and references therein).

Let us consider the function $\Psi_k(\rho, \tau, \lambda) = \Phi_k(\rho, \tau)\lambda^{n-2} + k\lambda^2$, with

$$\Phi_k(\rho,\tau) = \sum_{i=1}^k H(\xi_{i,k},\xi_{i,k}) - 2\sum_{1 \le i < j \le k} G(\xi_{i,k},\xi_{j,k}),$$
(9)

where $\xi_{i,k} = (\rho \cos(2\pi/k)i, \rho \sin(2\pi/k)i, 0, \dots, 0, \tau) \in \Omega$, *G* denotes the Green's function of $-\Delta$ in $H_0^1(\Omega)$ and H its regular part. Taking into account the symmetry properties (3) and (4), the problem reduces to finding critical points (ρ, τ, λ) for Ψ_k , with $\lambda > 0$, which persist with respect to small C¹ perturbations. Clearly, it is equivalent to finding critical points (ρ, τ) for Φ_k , with $\Phi_k(\rho, \tau) < 0$, which are stable with respect to C¹ perturbations.

The following lemma (see [9]) plays a crucial role in the proof of Theorems 1 and 2.

LEMMA 1. – There exists a sequence
$$(c_k)_k$$
 in \mathbb{R} , $c_k \to +\infty$, such that

$$\frac{1}{c_k}\Phi_k(\rho,\tau) \ge -\rho^{2-n} \quad \forall (\rho,\tau) \in S(\Omega), \ \forall k \in \mathbb{N} \quad and \quad \lim_{k \to \infty} \frac{1}{c_k}\Phi_k(\rho,\tau) = -\rho^{2-n} \quad \forall (\rho,\tau) \in S(\Omega).$$

Moreover, $\Phi_k(\rho, \tau) \to +\infty$ as $(\rho, \tau) \to (\hat{\rho}, \hat{\tau})$, for all $(\hat{\rho}, \hat{\tau}) \in \partial S(\Omega)$ such that $\hat{\rho} > 0$.

These properties of the function Φ_k allow us to say that, if the assumptions of Theorem 2 are satisfied, for k large enough there exists a minimum point for Φ_k constrained on $A \cap S(\Omega)$ while, under the assumptions of Theorem 1, a critical point for Φ_k can be obtained by a mini-max argument. In both cases the critical points (ρ_k, τ_k) we get for Φ_k persist with respect to small C¹ perturbations; moreover, for k large enough, they correspond to negative critical values (indeed, $\lim_{k\to\infty} \Phi_k(\rho_k, \tau_k) = -\infty$). So they give rise to solutions of the form (5) with $\mu_{k,\varepsilon}$ satisfying $\lim_{\varepsilon\to 0} \mu_{k,\varepsilon} \varepsilon^{1/(4-n)} = a_n [-\frac{1}{k} \Phi_k(\rho_k, \tau_k)]^{1/(4-n)}$, where a_n is a positive constant depending only on the dimension n.

Remark 1. – The proof shows also that for the solution obtained under the assumptions of Theorem 2 we have $\lim_{k\to\infty} \frac{1}{c_k} \Phi_k(\rho_k, \tau_k) = -[\min_A \Pi_\Omega]^{2-n}$, while the solution given by Theorem 1 satisfies $\lim_{k\to\infty} \frac{1}{c_k} \Phi_k(\rho_k, \tau_k) \ge -\rho_2^{2-n}$.

Example 1. – For all r > 1, s > 0 and $\delta > 0$, let us consider the domain $\Omega_{r,s}^{\delta} = \{x \in \mathbb{R}^n : \operatorname{dist}(x, \Omega_{r,s}) < \delta\}$, where $\Omega_{r,s} = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : 1 < |x| < r, (\sum_{i=1}^{n-1} x_i^2)^{1/2} > sx_n\}$. If $\delta < s(1+s^2)^{-1/2}$, then $\Omega_{r,s}^{\delta}$ is a contractible smooth bounded domain of \mathbb{R}^n ; moreover one can verify that $\lim_{r,s\to\infty} \sigma(\Omega_{r,s}^{\delta}) = 0$ for any $\delta \in]0, 1[$ (note that $\delta < s(1+s^2)^{-1/2}$ for *s* large enough). Thus, in order to prove Proposition 1, it suffices to observe that, if $n \ge 5$, both Theorems 1 and 2 apply when $\Omega = \Omega_{r,s}^{\delta}$ and guarantee the existence

R. Molle, D. Passaseo / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029-1032

of two *k*-spike solutions of problem (1) for *k* large and $\varepsilon > 0$ small enough. Notice that we have indeed two distinct *k*-spike solutions in $\Omega_{r,s}^{\delta}$ because (see Remark 1) the solution given by Theorem 2 satisfies $\lim_{k\to\infty} \frac{1}{c_k} \Phi(\rho_k, \tau_k) = -[s(1+s^2)^{-1/2} - \delta]^{2-n}$, while for the solution given by Theorem 1 we have $\lim_{k\to\infty} \frac{1}{c_k} \Phi(\rho_k, \tau_k) = -[1-\delta]^{2-n}$.

Remark 2. – Solutions which blow-up as $\varepsilon \to 0$ can be obtained also if n = 4; in this case the concentration parameter μ_{ε} satisfies $\lim_{\varepsilon \to 0} \mu_{\varepsilon} \exp(a/\varepsilon) = b$, where *a* and *b* are suitable positive constants. On the contrary, for n = 3 similar concentration phenomena do not occur (at least not when $\varepsilon \to 0$).

Remark 3. – Notice that condition (4) is not really necessary for the construction of multispike solutions of this type. In fact, if we assume only condition (3) and set $\Sigma(\Omega) = \{(\rho, \tau_1, ..., \tau_{n-2}) \in \mathbb{R}^{n-1} : \rho > 0, (0, \rho, \tau_1, ..., \tau_{n-2}) \in \Omega\}$, then a general result (reported in [10]) relates the existence of *k*-spike solutions, for *k* large and $\varepsilon > 0$ small enough, to the presence of suitable critical points of the function $\mathcal{E}(\rho, \tau_1, ..., \tau_{n-2}) = -\rho^{n-2}$ constrained on $\overline{\Sigma(\Omega)}$.

Remark 4. – If we replace the parameter ε in problem (1) with a variable coefficient a(x), then Pohozaev's identity does not give contradiction and the problem may have solutions even if Ω is a starshaped domain and $a(x) \ge 0$ for all $x \in \Omega$. In [14] it is proved that, if a(x) concentrates at a finite number of points of Ω , then (independently of the shape of Ω) there exist solutions which concentrate and blow-up at the same points.

References

- A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253–294.
- [2] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. 3 (1) (1995) 67–93.
- [3] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (4) (1983) 437–477.
- [4] H. Brézis, L.A. Peletier, Asymptotics for elliptic equations involving critical growth, in: Colombini, Modica, Spagnolo (Eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149–192.
- [5] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (6) (1988) 600-602.
- [6] E.N. Dancer, K. Zhang, Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal. 41 (5–6) (2000) 745–761.
- [7] W.Y. Ding, Positive solutions of $\Delta u + u^{(n+2)/(n-2)} = 0$ on contractible domains, J. Partial Differential Equations 2 (4) (1989) 83–88.
- [8] Z.C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (2) (1991) 159–174.
- [9] R. Molle, D. Passaseo, Concentrating solutions of slightly supercritical elliptic equations in symmetric domains, to appear.
- [10] R. Molle, D. Passaseo, to appear.
- [11] R. Molle, A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv. Differential Equations, to appear.
- [12] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 (2) (1989) 147–165.
- [13] D. Passaseo, Multiplicity of positive solutions for the equation $\Delta u + \lambda u + u^{2^*-1} = 0$ in noncontractible domains, Topol. Methods Nonlinear Anal. 2 (2) (1993) 343–366.
- [14] D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a(x)u = u^{2^*-1}$ in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (2) (1996) 185–227.
- [15] S.I. Pohožaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl. 6 (1965) 1408–1411.
- [16] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (10) (1989) 1241–1249.
- [17] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1) (1990) 1–52.