Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains

Riccardo Molle ${ }^{\text {a }}$, Donato Passaseo ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 1, 00133 Roma, Italy
${ }^{\text {b }}$ Dipartimento di Matematica "E. De Giorgi", Università di Lecce, P.O. Box 193, 73100 Lecce, Italy

Received 1 October 2002; accepted 25 October 2002
Note presented by Pierre-Louis Lions.

Abstract

Under suitable assumptions on Ω, we show that, for $\varepsilon>0$ small and k large enough, problem (1) below has solutions which concentrate and blow-up as $\varepsilon \rightarrow 0$ at exactly k points; the blowing-up points approach $\partial \Omega$ as $k \rightarrow \infty$; the number of solutions tends to infinity as $\varepsilon \rightarrow 0$. These assumptions allow Ω to be contractible and even arbitrarily close to starshaped domains. To cite this article: R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029-1032.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Équations elliptiques non linéaire avec non-linéarité critique en ouverts presque étoilés

Résumé \quad On montre que, si Ω satisfait certaines conditions, le problème (1) ci-dessous, pour $\varepsilon>0$ suffisamment petit et k grand, admet des solutions qui pour $\varepsilon \rightarrow 0$ se concentrent et explosent exactement en k points; les points de concentration s'approchent du bord de Ω quand $k \rightarrow \infty$; le nombre de solutions est arbitrairement grand pourvu que ε soit suffisamment petit. Parmi les ouverts bornés Ω qui satisfont ces conditions il y en a aussi de contractibles, qui peuvent même être arbitrairement proches de ouverts étoilés. Pour citer cet article : R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1029-1032. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Let us consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=u^{(n+2) /(n-2)}-\varepsilon u \quad \text { in } \Omega, \tag{1}\\
u>0 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω is a bounded domain of $\mathbb{R}^{n}, n \geqslant 3$, and ε is a real parameter. It is well known that, as a consequence of the Pohozaev's identity (see [15]), there exists no solution if Ω is starshaped and $\varepsilon \geqslant 0$.
For $\varepsilon=0$, the existence of solutions is proved (see [1]) in domains with nontrivial topology (in the sense that suitable homology groups are nontrivial). Notice that this nontriviality condition is only sufficient for

[^0]the existence of solutions but not necessary since existence results hold also in some contractible domains (see [5,7,12]).

The case $\varepsilon<0$ has been firstly considered in [3]; if $n \geqslant 4$, for any Ω (even starshaped) it is proved the existence of solutions for all $\varepsilon \in]-\lambda_{1}, 0\left[\right.$, where λ_{1} denotes the first eigenvalue of $-\Delta$ in $\mathrm{H}_{0}^{1}(\Omega)$ (if $n=3$ the problem is more complex). When $\varepsilon \rightarrow 0$, these solutions tend to concentrate as Dirac masses at special points of Ω (see $[4,8,17]$). Exploiting this concentration phenomena, it is possible to relate the number of solutions to the topology of Ω, when $\varepsilon<0$ is small enough. For example, if $n \geqslant 5$, the existence of at least as many solutions as the Ljusternik-Schnirelmann category of Ω is proved in [16] (an improved multiplicity result, which holds also if $n=4$, is obtained in [13]).

In this Note we are concerned with the case $\varepsilon>0$. We give sufficient conditions on Ω, which guarantee that the following property holds: for k large and $\varepsilon>0$ small enough, problem (1) has solutions which concentrate and blow-up at exactly k points as $\varepsilon \rightarrow 0$. Thus, in domains satisfying these conditions, the number of geometrically distinct solutions tends to infinity as $\varepsilon \rightarrow 0$ from above (while the problem may have no solution for $\varepsilon=0$). Let us point out that these results hold also in bounded contractible domains, which (unlike the case considered in $[5,7,12]$) are not required to be close to nontrivial domains; indeed they may be even arbitrarily close to starshaped domains in the sense specified below.

For any smooth bounded domain Ω of \mathbb{R}^{n}, let us set

$$
\begin{equation*}
\sigma(\Omega)=\sup _{x_{0} \in \Omega} \inf \left\{v(x) \cdot \frac{x-x_{0}}{\left|x-x_{0}\right|}: x \in \partial \Omega\right\} \tag{2}
\end{equation*}
$$

where $\nu(x)$ denotes the outward normal to $\partial \Omega$. It is natural to say that Ω is a "nearly starshaped" domain if $\sigma(\Omega)^{-}=\max \{0,-\sigma(\Omega)\}$ is small (a different definition of nearly starshaped domain is used in [6]).

The results we present in this Note prove, in particular, the following proposition (see Example 1).
PROPOSITION 1. - For any $\mu>0$ there exists a smooth bounded domain Ω such that $\sigma(\Omega) \in]-\mu, 0[$ and problem (1) has solutions for $\varepsilon>0$ small enough. Moreover, the number of geometrically distinct solutions tends to infinity as $\varepsilon \rightarrow 0$.

In order to prove this proposition, we consider domains satisfying the following conditions

$$
\begin{align*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega & \Longleftrightarrow\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, 0, x_{3}, \ldots, x_{n}\right) \in \Omega \tag{3}\\
\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \in \Omega & \Longleftrightarrow\left(x_{1}, \ldots,-x_{i}, \ldots, x_{n}\right) \in \Omega \quad \text { for } i=3, \ldots, n-1 \tag{4}
\end{align*}
$$

and, exploiting these symmetry properties, we look for solutions of the form

$$
\begin{equation*}
u_{k, \varepsilon}(x)=[n(n-2)]^{(n-2) / 4} \sum_{i=1}^{k} \frac{\mu_{k, \varepsilon}^{(n-2) / 2}}{\left(\mu_{k, \varepsilon}^{2}+\left|x-\xi_{i, k, \varepsilon}\right|^{2}\right)^{(n-2) / 2}}+\theta_{k, \varepsilon}(x) \tag{5}
\end{equation*}
$$

where $\theta_{k, \varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0, \mu_{k, \varepsilon}>0$ is a concentration parameter and the concentration points $\xi_{i, k, \varepsilon}$ have the form

$$
\begin{equation*}
\xi_{i, k, \varepsilon}=\left(\rho_{k, \varepsilon} \cos (2 \pi / k) i, \rho_{k, \varepsilon} \sin (2 \pi / k) i, 0, \ldots, 0, \tau_{k, \varepsilon}\right) \quad \text { for } i=1, \ldots, k \tag{6}
\end{equation*}
$$

The following theorems are proved in [10].
THEOREM 1. - Let Ω be a smooth bounded domain of $\mathbb{R}^{n}, n \geqslant 5$, satisfying conditions (3) and (4). Assume that there exist $\rho_{1}, \rho_{2}, \rho_{3}$ and $\tau_{1}, \tau_{2}, \tau_{3}$ in \mathbb{R} such that $\tau_{1}<\tau_{2}<\tau_{3}, \max \left\{\rho_{1}, \rho_{3}\right\}<\rho_{2}, \Omega$ contains $\left(\rho_{1}, 0, \ldots, 0, \tau_{1}\right)$ and $\left(\rho_{3}, 0, \ldots, 0, \tau_{3}\right)$ while $\left(\rho_{2}, 0, \ldots, 0, \tau_{2}\right) \notin \Omega$. Also assume that there exists a continuous function $\gamma:\left[\tau_{1}, \tau_{3}\right] \rightarrow \mathbb{R}^{+}$such that $\gamma\left(\tau_{1}\right)=\rho_{1}, \gamma\left(\tau_{3}\right)=\rho_{3}, \gamma\left(\tau_{2}\right)>\rho_{2}$ and $(\gamma(\tau), 0, \ldots, 0, \tau) \in \Omega \forall \tau \in\left[\tau_{1}, \tau_{3}\right]$. Then there exist $\bar{k} \in \mathbb{N}$ and a sequence $\left(\varepsilon_{k}\right)_{k}, \varepsilon_{k}>0$ for all $k \geqslant \bar{k}$, such that, for all $k \geqslant \bar{k}$ and $\left.\varepsilon \in] 0, \varepsilon_{k}\right]$, problem (1) has at least one solution of the form (5). As $\varepsilon \rightarrow 0$
 $\lim _{\varepsilon \rightarrow 0} \mu_{k, \varepsilon} \varepsilon^{1 /(4-n)}=\lambda_{k}>0 \forall k \geqslant \bar{k}$, with $\lim _{k \rightarrow \infty} \lambda_{k}=0$.

THEOREM 2. - Let Ω be a smooth bounded domain of $\mathbb{R}^{n}, n \geqslant 5$, satisfying conditions (3) and (4). Let us set

$$
\begin{equation*}
S(\Omega)=\left\{(\rho, \tau) \in \mathbb{R}^{2}: \rho>0,(\rho, 0, \ldots, 0, \tau) \in \Omega\right\} \tag{7}
\end{equation*}
$$

and consider the function $\Pi_{\Omega}: \mathbb{R}^{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
\Pi_{\Omega}(\rho, \tau)=\rho \quad \text { if }(\rho, \tau) \in \overline{S(\Omega)}, \quad \Pi_{\Omega}(\rho, \tau)=+\infty \quad \text { otherwise. } \tag{8}
\end{equation*}
$$

Assume that there exists an open subset $A \subset \mathbb{R}^{2}$ such that $0<\inf _{A} \Pi_{\Omega}<\inf _{\partial A} \Pi_{\Omega}$. Then the same conclusion of Theorem 1 holds; moreover, $\lim _{k \rightarrow \infty} \lim \sup _{\varepsilon \rightarrow 0} \operatorname{dist}\left(\left(\rho_{k, \varepsilon}, \tau_{k, \varepsilon}\right), M_{A}\right)=0$, where M_{A} is the set of the minimum points for Π_{Ω} constrained on A (notice that $M_{A} \subset \partial S(\Omega) \cap A$).

The proof of Theorems 1 and 2 is based on a finite dimensional reduction method introduced in [2] and [17] (see also [9,11] and references therein).

Let us consider the function $\Psi_{k}(\rho, \tau, \lambda)=\Phi_{k}(\rho, \tau) \lambda^{n-2}+k \lambda^{2}$, with

$$
\begin{equation*}
\Phi_{k}(\rho, \tau)=\sum_{i=1}^{k} H\left(\xi_{i, k}, \xi_{i, k}\right)-2 \sum_{1 \leqslant i<j \leqslant k} G\left(\xi_{i, k}, \xi_{j, k}\right) \tag{9}
\end{equation*}
$$

where $\xi_{i, k}=(\rho \cos (2 \pi / k) i, \rho \sin (2 \pi / k) i, 0, \ldots, 0, \tau) \in \Omega, G$ denotes the Green's function of $-\Delta$ in $\mathrm{H}_{0}^{1}(\Omega)$ and H its regular part. Taking into account the symmetry properties (3) and (4), the problem reduces to finding critical points (ρ, τ, λ) for Ψ_{k}, with $\lambda>0$, which persist with respect to small C^{1} perturbations. Clearly, it is equivalent to finding critical points (ρ, τ) for Φ_{k}, with $\Phi_{k}(\rho, \tau)<0$, which are stable with respect to C^{1} perturbations.

The following lemma (see [9]) plays a crucial role in the proof of Theorems 1 and 2.
LEMMA 1. - There exists a sequence $\left(c_{k}\right)_{k}$ in $\mathbb{R}, c_{k} \rightarrow+\infty$, such that

$$
\frac{1}{c_{k}} \Phi_{k}(\rho, \tau) \geqslant-\rho^{2-n} \quad \forall(\rho, \tau) \in S(\Omega), \forall k \in \mathbb{N} \quad \text { and } \quad \lim _{k \rightarrow \infty} \frac{1}{c_{k}} \Phi_{k}(\rho, \tau)=-\rho^{2-n} \quad \forall(\rho, \tau) \in S(\Omega) .
$$

Moreover, $\Phi_{k}(\rho, \tau) \rightarrow+\infty$ as $(\rho, \tau) \rightarrow(\hat{\rho}, \hat{\tau})$, for all $(\hat{\rho}, \hat{\tau}) \in \partial S(\Omega)$ such that $\hat{\rho}>0$.
These properties of the function Φ_{k} allow us to say that, if the assumptions of Theorem 2 are satisfied, for k large enough there exists a minimum point for Φ_{k} constrained on $A \cap S(\Omega)$ while, under the assumptions of Theorem 1, a critical point for Φ_{k} can be obtained by a mini-max argument. In both cases the critical points (ρ_{k}, τ_{k}) we get for Φ_{k} persist with respect to small C^{1} perturbations; moreover, for k large enough, they correspond to negative critical values (indeed, $\left.\lim _{k \rightarrow \infty} \Phi_{k}\left(\rho_{k}, \tau_{k}\right)=-\infty\right)$. So they give rise to solutions of the form (5) with $\mu_{k, \varepsilon}$ satisfying $\lim _{\varepsilon \rightarrow 0} \mu_{k, \varepsilon} \varepsilon^{1 /(4-n)}=a_{n}\left[-\frac{1}{k} \Phi_{k}\left(\rho_{k}, \tau_{k}\right)\right]^{1 /(4-n)}$, where a_{n} is a positive constant depending only on the dimension n.

Remark 1. - The proof shows also that for the solution obtained under the assumptions of Theorem 2 we have $\lim _{k \rightarrow \infty} \frac{1}{c_{k}} \Phi_{k}\left(\rho_{k}, \tau_{k}\right)=-\left[\min _{A} \Pi_{\Omega}\right]^{2-n}$, while the solution given by Theorem 1 satisfies $\lim _{k \rightarrow \infty} \frac{1}{c_{k}} \Phi_{k}\left(\rho_{k}, \tau_{k}\right) \geqslant-\rho_{2}^{2-n}$.

Example 1. - For all $r>1, s>0$ and $\delta>0$, let us consider the domain $\Omega_{r, s}^{\delta}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, \Omega_{r, s}\right)<\right.$ $\delta\}$, where $\Omega_{r, s}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 1<|x|<r,\left(\sum_{i=1}^{n-1} x_{i}^{2}\right)^{1 / 2}>s x_{n}\right\}$. If $\delta<s\left(1+s^{2}\right)^{-1 / 2}$, then $\Omega_{r, s}^{\delta}$ is a contractible smooth bounded domain of \mathbb{R}^{n}; moreover one can verify that $\lim _{r, s \rightarrow \infty} \sigma\left(\Omega_{r, s}^{\delta}\right)=0$ for any $\delta \in] 0,1\left[\right.$ (note that $\delta<s\left(1+s^{2}\right)^{-1 / 2}$ for s large enough). Thus, in order to prove Proposition 1, it suffices to observe that, if $n \geqslant 5$, both Theorems 1 and 2 apply when $\Omega=\Omega_{r, s}^{\delta}$ and guarantee the existence
of two k-spike solutions of problem (1) for k large and $\varepsilon>0$ small enough. Notice that we have indeed two distinct k-spike solutions in $\Omega_{r, s}^{\delta}$ because (see Remark 1) the solution given by Theorem 2 satisfies $\lim _{k \rightarrow \infty} \frac{1}{c_{k}} \Phi\left(\rho_{k}, \tau_{k}\right)=-\left[s\left(1+s^{2}\right)^{-1 / 2}-\delta\right]^{2-n}$, while for the solution given by Theorem 1 we have $\lim _{k \rightarrow \infty} \frac{1}{c_{k}} \Phi\left(\rho_{k}, \tau_{k}\right)=-[1-\delta]^{2-n}$.

Remark 2. - Solutions which blow-up as $\varepsilon \rightarrow 0$ can be obtained also if $n=4$; in this case the concentration parameter μ_{ε} satisfies $\lim _{\varepsilon \rightarrow 0} \mu_{\varepsilon} \exp (a / \varepsilon)=b$, where a and b are suitable positive constants. On the contrary, for $n=3$ similar concentration phenomena do not occur (at least not when $\varepsilon \rightarrow 0$).

Remark 3. - Notice that condition (4) is not really necessary for the construction of multispike solutions of this type. In fact, if we assume only condition (3) and set $\Sigma(\Omega)=\left\{\left(\rho, \tau_{1}, \ldots, \tau_{n-2}\right) \in \mathbb{R}^{n-1}: \rho>0\right.$, $\left.\left(0, \rho, \tau_{1}, \ldots, \tau_{n-2}\right) \in \Omega\right\}$, then a general result (reported in [10]) relates the existence of k-spike solutions, for k large and $\varepsilon>0$ small enough, to the presence of suitable critical points of the function $\mathcal{E}\left(\rho, \tau_{1}\right.$, $\left.\ldots, \tau_{n-2}\right)=-\rho^{n-2}$ constrained on $\overline{\Sigma(\Omega)}$.

Remark 4. - If we replace the parameter ε in problem (1) with a variable coefficient $a(x)$, then Pohozaev's identity does not give contradiction and the problem may have solutions even if Ω is a starshaped domain and $a(x) \geqslant 0$ for all $x \in \Omega$. In [14] it is proved that, if $a(x)$ concentrates at a finite number of points of Ω, then (independently of the shape of Ω) there exist solutions which concentrate and blow-up at the same points.

References

[1] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253-294.
[2] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. 3 (1) (1995) 67-93.
[3] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (4) (1983) 437-477.
[4] H. Brézis, L.A. Peletier, Asymptotics for elliptic equations involving critical growth, in: Colombini, Modica, Spagnolo (Eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192.
[5] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (6) (1988) 600-602.
[6] E.N. Dancer, K. Zhang, Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal. 41 (5-6) (2000) 745-761.
[7] W.Y. Ding, Positive solutions of $\Delta u+u^{(n+2) /(n-2)}=0$ on contractible domains, J. Partial Differential Equations 2 (4) (1989) 83-88.
[8] Z.C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (2) (1991) 159-174.
[9] R. Molle, D. Passaseo, Concentrating solutions of slightly supercritical elliptic equations in symmetric domains, to appear.
[10] R. Molle, D. Passaseo, to appear.
[11] R. Molle, A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv. Differential Equations, to appear.
[12] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 (2) (1989) 147-165.
[13] D. Passaseo, Multiplicity of positive solutions for the equation $\Delta u+\lambda u+u^{2^{*}-1}=0$ in noncontractible domains, Topol. Methods Nonlinear Anal. 2 (2) (1993) 343-366.
[14] D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u+a(x) u=$ $u^{2^{*}-1}$ in bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (2) (1996) 185-227.
[15] S.I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965) 1408-1411.
[16] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (10) (1989) 1241-1249.
[17] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1) (1990) 1-52.

[^0]: E-mail address: molle@mat.uniroma2.it (R. Molle).

