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Abstract

Following the approach of Gromov and Witten, we construct invariants under deformation of real rational sym
4-manifolds. These invariants provide lower bounds for the number of real rationalJ -holomorphic curves in a given homolog
class passing through a given real configuration of points.To cite this article: J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. I
336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Suivant l’approche de Gromov et Witten, nous construisons des invariants par déformation des variétés symplectiqu
rationnelles de dimension quatre. Ces invariants fournissent des bornes inférieures pour le nombre de courbesJ -holomorphes
rationnelles réelles de classe d’homologie donnée passant par une configuration réelle de points donnée.Pour citer cet
article : J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. The invariant χ

Let (X,ω, cX) be areal symplectic4-manifold, that is a triple made of a 4-manifoldX, a symplectic formω
onX and an involutioncX onX such thatc∗Xω = −ω, all of them being of classC∞. The fixed point set ofcX
is called thereal part ofX and is denoted byRX. It is assumed here to be non-empty. Letd ∈ H2(X;Z) be a
homology class satisfyingc1(X)d > 0, wherec1(X) is the first Chern class of the symplectic 4-manifold(X,ω).
From Corollary 1.5 of [5], we know that the existence of such a class forces the 4-manifoldX to be rational or
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see [1],
ruled, as soon asd is not the class of an exceptional divisor. Hence, from now on, we will assume(X,ω) to be
rational. Letx ⊂ X be areal configurationof points, that is a subset invariant undercX , made ofc1(X)d − 1
distincts points. Denote byr the number of such points which are real. LetJ ω be the space of almost compl
structures ofX tamed byω and which are of Hölder classCl,α wherel � 2 andα ∈ ]0,1[ are fixed. This spac
is a contractible Banach manifold of classCl,α . Denote byRJω ⊂ Jω the subspace consisting of thoseJ ∈ Jω
for which cX is J -antiholomorphic. It happens to be a contractible Banach submanifold of classCl,α of Jω. If
J ∈ RJω is generic enough, then there are only finitely manyJ -holomorphic rational curves inX passing through
x in the homology classd (see Theorem 3.1). These curves are all nodal and irreducible. The total number o
double points isδ = 1

2(d
2 − c1(X)d + 2). Let C be such a curve which is assumed to be real. The real do

points ofC are of two different natures. They are either the local intersection of two real branches, or th
intersection of two complex conjugated branches. In the first case they are callednon-isolatedand in the second
case they are calledisolated. We define themassof the curveC to be the number of its real isolated double poin
it is denoted bym(C). For every integerm ranging from 0 toδ, denote bynd(m) the total number of realJ -
holomorphic rational curves of massm in X passing throughx and realizing the homology classd . Then define:
χdr (x, J )=

∑δ
m=0(−1)mnd(m).

The main result to be presented in this Note is:

Theorem 1.1. Let (X,ω, cX) be a real rational symplectic4-manifold, andd ∈ H2(X;Z). Let x ⊂ X be a real
configuration ofc1(X)d − 1 distincts points andr be the cardinality ofx ∩ RX. Finally, letJ ∈ RJω be an almost
complex structure generic enough, so that the integerχdr (x, J ) is well defined. Then, this integerχdr (x, J ) neither
depends on the choice ofJ nor on the choice ofx (provided the cardinality ofx ∩ RX is r).

For convenience, this integer will be denoted byχdr , and whenr does not have the same parity asc1(X)d − 1,

we putχdr to be 0. We then denote byχd(T ) the polynomial
∑c1(X)d−1
r=0 χdr T

r ∈ Z[T ]. It follows from Theorem 1.1
that the functionχ :d ∈ H2(X;Z) �→ χd(T ) ∈ Z[T ] only depends on the real symplectic 4-manifold(X,ω, cX)
and is invariant under deformation of this real symplectic 4-manifold. As an application of this invariant, we
the following lower bounds:

Corollary 1.2. Under the hypothesis of Theorem1.1, the integer|χdr | gives a lower bound for the total number
real rational J -holomorphic curves ofX in the homology classd passing throughx, independently of the choic
of a genericJ ∈ RJω.

Note that this number of real curves is always bounded from above by the total numberNd of rational
J -holomorphic curves ofX passing throughx in the homology classd , which does not depend on the cho
of J . This numberNd is a Gromov–Witten invariant of the symplectic 4-manifold(X,ω) and was computed b
Kontsevich in [4]. One of the main problems of real enumerative geometry nowadays is, in this context, t
if there exists a generic real almost-complex structureJ ∈ RJω such that all these rationalJ -holomorphic curves
are real. The following corollary provides a criterium for the existence of such a structure.

Corollary 1.3. Under the hypothesis of Theorem1.1, assume thatχdr � 0 (resp.χdr � 0). Assume that there exis
a genericJ ∈ RJω such thatX has 1

2(Nd − |χdr |) real J -holomorphic curves of odd(resp. even) mass passing
throughx in the homology classd . Then, all of the rationalJ -holomorphic curves ofX passing throughx in the
homology classd are real.

Example 1. Let (X,ω, cX) be the complex projective plane equipped with its standard symplectic form
real structure. We denote the homology classes ofCP 2 by integers. Thenχ1

2 = 1, χ2
5 = 1 andχ3

r = r for an
evenr in between 0 and 8. The latter can be obtained computing the Euler caracteristic of the real par
blown up projective plane at the nine base points of a pencil of cubics, as was noticed by V. Kharlamov (
Proposition 4.7.3, or [7], Theorem 3.6).
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Example 2. Let (X,ω, cX) be the real maximal smooth cubic surface ofCP 3, andl be the homology class of
line. Thenχl0 = 27.

Further computations of this invariantχ seem to require some recursion formula analogous to the one obt
by Kontsevich in [4]. Also, is it possible to obtain similar invariants for any real symplectic 4-manifold using h
genus curves?

2. The invariant θ

Now, lety = (y1, . . . , yc1(X)d−2) be a real configuration ofc1(X)d−2 distinct points ofX, ands be the numbe
of those which are real. We assume thatyc1(X)d−2 is real, so thats does not vanish. IfJ ∈ RJω is generic enough
then there are only finitely manyJ -holomorphic rational curves inX in the homology classd passing throughy
and having a node atyc1(X)d−2. These curves are all nodal and irreducible. For every integerm ranging from 0 toδ,
denote bŷn+

d (m) (resp.n̂−
d (m)) the total number of these curves which are real, of massm and with a non-isolated

(resp. isolated) real double points atyc1(X)d−2. Define then:θds (y, J )=
∑δ
m=0(−1)m(n̂+

d (m)− n̂−
d (m)).

Theorem 2.1. Let (X,ω, cX) be a real rational symplectic4-manifold, andd ∈ H2(X;Z). Let y ⊂ X be a real
configuration ofc1(X)d − 2 distincts points ands �= 0 be the cardinality ofy ∩ RX. Finally, let J ∈ RJω be an
almost complex structure generic enough, so that the integerθds (y, J ) is well defined. Then, this integerθds (y, J )
neither depends on the choice ofJ nor on the choice ofy (provided the cardinality ofy ∩ RX is s).

Once more, for convenience, the integerθds (y, J ) will be denoted byθds , and we putθds = 0 whens does not
have the same parity asc1(X)d . This invariant makes it possible to give relations between the coefficients o
polynomialχd , namely:

Theorem 2.2. Let (X,ω, cX) be a real rational symplectic4-manifold,d ∈ H2(X;Z) and r be an integer in
between0 andc1(X)d − 3. Thenχdr+2 = χdr + 2θdr+1.

3. Outline of the proof of Theorem 1.1

First, we construct the moduli spaceMd
0(x) of genus 0 pseudo-holomorphic curves in the homology clad

passing throughx. This space is equipped with aZ/2Z-action induced by the real structurecX . The fixed point se
RMd

0(x) of this action is a Banach submanifold ofMd
0(x) consisting of the real curves, that is of the curves wh

are invariant undercX . The index zero Fredholm projectionπ :Md
0(x)→ Jω is Z/2Z-equivariant and induces a

index zero Fredholm projectionπR :RMd
0(x)→ RJω. We first prove the following theorem.

Theorem 3.1. The set of regular values of the projectionπ :Md
0(x)→ Jω intersectsRJω in a dense set of th

second category ofRJω.

This theorem follows from the fact that a point ofMd
0(x) (resp. ofRMd

0(x)) is regular forπ (resp. forπR) if
and only if it corresponds to an immersed curve (see [2,3]) and from the following proposition.

Proposition 3.2. The submanifoldRJω of Jω is transversal to the restriction ofπ to Md
0(x) \ RMd

0(x).

It is – essentially – a consequence of Theorem 3.1 that the integersχdr (x, J ) andθds (y, J ) are well defined, as
soon asJ ∈ RJω is generic enough.

Then, letJ0, J1 ∈ RJω be two regular values of the projectionπ :Md
0(x)→Jω such that the integersχdr (x, J1)

andχdr (x, J2) are well defined. Letγ : [0,1] → RJω be a path transversal to the projectionsπR :RMd
0(x)→ RJω

and π : (Md
0(x) \ RMd

0(x)) → Jω (see Proposition 3.2), joiningJ0 to J1. Thus, RMγ = π−1
R
(Im(γ )) is a
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submanifold of dimension one ofRMd
0(x), equipped with a projectionπγ :RMγ → [0,1] induced byπR. Using

genericity arguments, we prove that the pathγ can be chosen in order that every element ofRMγ is a nodal
curve, except a finite number of them which may have a unique real ordinary cusp, a unique real triple po
unique real tacnode. Moreover, this path can be chosen so that when a sequence of elements ofRMγ converges
in Gromov topology to a reducible curve ofX, then this curve has only two irreducible components, both r
and only nodal points as singularities. Finally, this path can be chosen so that the critical points of the pr
πγ , which correspond to the cuspidal curves, are all non-degenerate. To obtain these genericity results, w
strong use of the results and techniques developed in [3] and [6].

At this point, the integerχdr (x, γ (t)) is well defined for all but a finite number of values oft , and is obviously
constant between these parameters. The only thing to prove is that it also does not change while cross
values which correspond to a real triple point or tacnode, to a cuspidal curve, or to a reducible curve. In
of a curve having a real triple point or a real tacnode, it is not hard to check. In the case of a reducible c
follows from the following proposition.

Proposition 3.3. LetC0 be a real reducibleJ0-holomorphic curve ofX passing throughx and limit of a sequenc
of elements ofRMγ . LetJ0 = γ (t0) for t0 ∈ ]0,1[ andC1, C2 be the two irreducible components ofC0. LetR be
the number of real intersection points betweenC1 andC2. Then there exist a neighborhoodW ofC0 in the Gromov

compactificationRMd
0(x) andη > 0 such that for everyt ∈ ]t0 − η, t0 + η[ \ {t0}, π−1

γ (t) ∩W consists exactly
ofR real γ (t)-holomorphic curves, each of them obtained topologically by smoothing a different real inters
point ofC1 ∩C2.

Finally, in the case of a cuspidal curve, it follows from the following proposition.

Proposition 3.4. LetC0 ∈ RMγ be a critical point ofπγ which is a local maximum(resp. minimum). Then there
exist a neighborhoodW ofC0 in RMγ andη > 0 such that for everyt ∈ ]t0−η, t0[ (resp. for everyt ∈ ]t0, t0+η[),
π−1
γ (t)∩W consists of two curvesC+

t andC−
t satisfyingm(C+

t )=m(C−
t )+1, and for everyt ∈ ]t0, t0 +η[ (resp.

for everyt ∈ ]t0 − η, t0[), π−1
γ (t) ∩W = ∅.

In Proposition 3.4, the curveC0 has a unique cuspidal point which is a real ordinary cusp. Thus bothC+
t and

C−
t have a real node in a neighborhood of this cusp. To get Proposition 3.4, one has to prove that for one

curves, this real node is non-isolated and for the other one, it is isolated. Note that in contrast to the previo
the coefficient(−1)m in the definition ofχdr plays here a crucial rôle to get the invariance.

The proofs of Theorems 2.1 and 2.2 are based on the same kind of arguments.
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