
ies is an

le cas où

nd
bers in

enter for
C. R. Acad. Sci. Paris, Ser. I 336 (2003) 479–482

Geometry/Functional Analysis

More on the duality conjecture for entropy numbers

Sur la conjecture de la dualité pour les nombres d’entropie

Shiri Artsteina,1, Vitali D. Milman b, Stanislaw J. Szarekb,c

a School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
b Équipe d’analyse fonctionnelle, B.C. 186, Université Paris VI, 4, place Jussieu, 75252 Paris, France

c Department of Mathematics, Case Western Reserve University, Cleveland, OH 44106-7058, USA

Received 11 February 2003; accepted 25 February 2003

Presented by Michel Talagrand

Abstract

We verify, up to a logarithmic factor, the duality conjecture for entropy numbers in the case where one of the bod
ellipsoid.To cite this article: S. Artstein et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous démontrons, à un facteur logarithmique près, la conjecture concernant la dualité de nombres d’entropie dans
l’un de deux corps est un ellipsoïde.Pour citer cet article : S. Artstein et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

For two convex bodiesK andT in R
n, the covering number ofK by T , denotedN(K,T ), is defined as the

minimal number of translates ofT needed to coverK. An old problem, going back to Pietsch ([9], p. 38) a
usually referred to as the “duality conjecture for entropy numbers”, can be stated in terms of covering num
the following way. (Below and in what follows all logarithms are to the base 2.)

Conjecture 1 (Duality Conjecture).There exist two numerical constantsa andb, such that for anyn ∈ N and any
two symmetric convex bodiesK andT in R

n one has

logN
(
T ◦, aK◦) � b logN(K,T ),

whereA◦ denotes the polar body ofA.
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We refer the reader to the recent paper [7] and the book [11] for background information on the probl
further references.

In this Note we concentrate only on the case in which eitherK or T is an ellipsoid. [If, as is more customar
we use the language of compact operators between Banach spaces and their entropy numbers rather th
convex bodies, this corresponds to either the domain or the range of the operator being a Hilbert space.]
invariance of the problem, we may and shall assume that the ellipsoid in question is the Euclidean unit ballD ⊂ R

n.
For a bounded setA ⊂ R

n, we set

M∗(A) :=
∫

Sn−1

sup
x∈A

〈x,u〉dσ(u),

whereσ is the normalized Lebesgue measure on the sphere. Our goal is to complement the following result
recently in [7] (see Proposition 4.1 there) going in the direction of Conjecture 1.

Theorem 2 [7,8]. There exists a universal constantC > 0, such that for anyn ∈ N and any convex0-symmetric
bodyK ⊂ R

n we have

logN
(
D,CγK◦) � 2 logN(K,D), (1)

where γ := max{1,M∗(K ∩ D)(logN(K,D)/n)−1/2}.
Moreover, it was shown in [7] that one can reduce estimating covering numbers in (1) to the special

which the body not only is covered byN = N(K,D) balls, but is also the convex hull of (at most)N points. It
was conjectured there that for this class of bodies the quantityγ is in fact bounded by a universal constant, wh
of course would then imply “half” of the Duality Conjecture in our setting, i.e.,T = D in Conjecture 1 (observ
that the roles ofK andD in Theorem 2 are not exchangeable). The conjecture concerning bounded ness oγ was
discussed in [7] at length, and equivalent geometrical formulations were proposed. Although the conjecture
been settled yet, it was proved up to a logarithmic factor. More precisely, we have (see [7], Theorem 9.3)

Proposition 3. There is a universal constantC0 such that ifn ∈ N and S ⊂ R
n is any finite set, then settin

K = convS andk = max{log|S|, logN(K,D)} we have

M∗(K ∩ D) � C0
√

k/n(1+ logk)3. (2)

Together with Theorem 2 and the remark following it, this easily implies a one-sided duality resul
a factor – playing the role ofa from Conjecture 1 – which is not a numerical constant but instead eq
O((logk)3) = O((log logN(K,D))3); see [7], Theorem 9.4.

In this Note we wish to show how the validity of the conjecture from [7], i.e., the uniform boundedne
parametersγ for the class of sets described in the paragraph following Theorem 2, implies also the other
the duality conjecture in our setting (i.e., when, in the notation of Conjecture 1,K = D) and that partial results suc
as Proposition 3 give duality-type estimates in that reverse inequality. We prove the following result complem
Theorem 2.

Theorem 4. There exists an absolute constantc > 0 such that ifn ∈ N, K ⊂ R
n is a 0-symmetric convex bod

andγ has the same meaning as in Theorem2, then

logN(K,D) � 3 logN
(
D,cγ −1K◦). (3)

Let now α > 0 and assume that, in the above context, logN(K,D) � αn. Since we have “for free” tha
M∗(K ∩ D) � 1, Theorems 2 and 4 imply a two sided duality result

1
logN

(
D,a(α)K◦) � logN(K,D) � 3 logN

(
D,a(α)−1K◦), (4)
2
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wherea(α) = O(α−1/2). This completes the following result by König and Milman [4], which implies duality (
two generalsymmetric convex bodies) in the case where the logarithm of a covering number issufficiently large
when compared ton: if K andT are two 0-symmetric convex bodies inR

n, then

1

C′ �
(

N(K,T )

N(T ◦,K◦)

)1/n

� C′, (5)

whereC′ is a universal constant. (In fact the bodies need not be symmetric; it suffices to require that their ce
are 0, see [6].) We shall use this result in the sequel. On the other hand, (4) should be compared with [10
M-ellipsoids are used to achieve results in the same direction. Our proof, despite using simpler tools, p
slightly better results than [10] specialized to our setting.

Proof of Theorem 4. DenoteN := N(K,D). Our goal is to prove thatN(D,cγ −1K◦) � N1/3, whereγ =
max{1,

√
n/ logNM∗(K ∩ D)}. Let C1 = c−1/2 (our choice ofc will be specified later). Assume first th

N(K,C1γD) � N2/3. A result of Tomczak-Jaegermann [12] (see [2], Proposition 2, for a more explicit va
stating thatN(K,D) � N(K,θD)N(D, 1

2θ
K◦) for all θ > 0 implies then that

N
(
D,(2C1γ )−1K◦) � N1/3,

which yields (3).
It remains to handle the caseN(K,C1γD) > N2/3. This implies that there exists aC1γ -separated (in the

Euclidean metric) subsetS of K of cardinality> N2/3. We setk1 := �c1 logN�, with c1 = (3 logC′)−1, whereC′
comes from (5). [This will ensure that when we use (5) in dimensionk1, we will get a meaningful result; notice als
that we may assume thatk1 < n, as otherwise logN � c−1

1 n and the answer follows easily from (5).] Now consid
a random orthogonal projectionPE of K onto ak1-dimensional subspaceE, distributed uniformly with respec
to the Haar measure on the corresponding Grassmanian. It is well known that under such projections a
between two points is typically multiplied by a factor close to

√
k1/n. Moreover, from the results described in [1

which are an isomorphic extension of the Johnson–Lindenstrauss lemma [3], we know that ifS ⊂ R
n is a finite set,

then – with probability close to 1 –all the distances between elements ofS are multiplied by factors� c2
√

k1/n,
wherec2 > 0 depends only on (an upper bound for) the ratio log|S|/k1; in particular under our assumption
c2 ∈ (0,1] is universal. It follows that, with probability close to 1, the imagePES of theC1γ -separated setS is
c2C1

√
k1/n γ -separated. Noting thatPES ⊂ PEK ⊂ E, we deduce that

N
(
PEK,C2

√
k1/nγDE

)
> N2/3,

whereDE denotes the unit ball inE andC2 = c2C1 = c2c
−1/2. However, we are now in a position to use (5)

dimensionk1, which (by our choice ofk1) implies

N
(
DE,C2

√
k1/nγK◦ ∩ E

)
> N1/3. (6)

All that is left is to return to the original dimension. For this we use a Dvoretzky theorem-type assertion,
claims that a random projection ofK ∩ D onto dimensionk1 is, with probability close to 1, contained in th
Euclidean ball of radiusC3 max{M∗(K ∩ D),

√
k1/n}, whereC3 � 1 is a universal constant (for reference see

or Fact 3.1 in [7]). Dualizing this (and using the definitions ofγ andk1) we obtain

C4
√

k1/nγ conv(K◦ ∪ D) ∩ E ⊃ DE

(with C4 = C3 max{1,
√

2/c1}), which combined with (6) yields

N
(
C4 conv(K◦ ∪ D) ∩ E,C2K

◦ ∩ E
)
> N1/3.

We now choose the originalc in the statement of the theorem:c = (C4)
−1c2/8. This means precisely thatC2 = 4C4.

Then
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N1/3 < N
(
conv(K◦ ∪ D) ∩ E,4K◦ ∩ E

)
� N

(
conv(K◦ ∪ D) ∩ E,2K◦)

� N
(
K◦ + D,2K◦)

� N
(
D,K◦),

where for the second inequality we use the fact that, for everyx ∈ R
n, the set(x + 2K◦) ∩ E is contained in a

translate of 4K◦ ∩ E. The proof is now complete. Notice that in the second case the parameterγ does not ente
into the final formulae and we obtain duality with absolute constants.

As suggested earlier, we can combine Theorem 4 with Proposition 3 to show the following

Corollary 5. There exists an absolute constantc′ > 0 such that ifK is a 0-symmetric convex body inRn and if
logN(K,D) =: k, then

logN(K,D) � 3 logN
(
D,c′(1+ logk)−3K◦). (7)

Proof. SinceN(K,D) = 2k, there exists a 1-separated setS = {x1, . . . , x2k } ⊂ K. DenoteK1 = convS, then of
course

N(2K1,D) = N

(
K1,

1

2
D

)
� 2k.

The bodyK1 satisfies the hypotheses of Proposition 3 and so

M∗(2K1 ∩ D) � 2M∗(K1 ∩ D) � 2C0
√

k/n(1+ logk)3.

Using Theorem 4 (observe thatγ is at most max{1,2C0(1+ logk)3}) we see that

logN(2K1,D) � 3 logN
(
D,c′(1+ logk)−3K◦

1

)
.

Combining the estimates and taking into account thatK◦ ⊂ K◦
1 we obtain (7).
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