Functional Analysis

K-duality for pseudomanifolds with an isolated singularity K-dualité pour les pseudo-variétés à singularité isolée

Claire Debord ${ }^{\text {a }}$, Jean-Marie Lescure ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de mathématiques et applications, Université de Haute-Alsace, 4, rue des Frères Lumière, 68093 Mulhouse cedex, France
${ }^{\mathrm{b}}$ Laboratoire de mathématiques pures, Université Blaise Pascal, Complexe universitaire des Cézeaux, 124, av. des Landais, 63177 Aubière cedex, France
Received 18 December 2002; accepted after revision 3 March 2003
Presented by Alain Connes

Abstract

We associate to a pseudomanifold X with an isolated singularity a differentiable groupoid G which plays the role of the tangent space of X. We construct a Dirac element D and a Dual Dirac element λ which induce a Poincaré duality in K-theory between the C^{*}-algebras $C(X)$ and $C^{*}(G)$. To cite this article: C. Debord, J.-M. Lescure, C. R. Acad. Sci. Paris, Ser. I 336 (2003). © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Etant donnée une pseudo-variété X ayant une singularité isolée, nous lui associons un groupoïde différentiable G qui joue le rôle d'espace tangent à X. Nous construisons un élément Dirac D ainsi qu'un élément dual-Dirac λ qui induisent une dualité de Poincaré en K-théorie entre les C^{*}-algèbres $C(X)$ et $C^{*}(G)$. Pour citer cet article: C. Debord, J.-M. Lescure, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. The tangent bundle of a singular manifold

Let X be a pseudomanifold with an isolated singularity c, that is $X=c L \cup X_{1}$, where X_{1} is a smooth compact manifold with boundary L glued along its boundary with the cone over L : $c L=L \times[0,1] / L \times\{0\}$. The singularity c is then the image of $L \times\{0\}$ in $c L$. We denote by $M=L \times]-1,1] \cup X_{1}$ the manifold obtained by gluing X_{1} with $L \times]-1,1]$ along the boundary.

If y is a point of M or of $X \backslash\{c\}$ which is in $L \times]-1,1\left[\right.$ we note $y_{L} \in L$ its tangential componant and $\left.k_{y} \in\right]-1,1$ [its radial coordinate; the function k_{y} is smoothly extended to X_{1} in such a way that $k_{y} \geqslant 1$ on X_{1}. We set $M^{+}=\left\{y \in M \mid k_{y}>0\right\}, M^{-}=\left\{y \in M \mid k_{y}<0\right\}$ and $\overline{M^{+}}=\left\{y \in M \mid k_{y} \geqslant 0\right\}$.

[^0]We suppose that the manifold M is equipped with a Riemannian metric whose injectivity radius is bigger than 1 and which is a product metric on $L \times]-1,1[$.

We define the groupoid G, with source map s, range map r and space of units $G^{(0)}=M$:

$$
G=M^{-} \times M^{-} \cup T \overline{M^{+}} \underset{r}{\stackrel{s}{\rightrightarrows}} M .
$$

 $\overline{M^{+}}$and the pair groupoid $M^{-} \times M^{-} \rightrightarrows M^{-}$.

In order to equip G with a smooth structure, we take the usual structure of manifold on $M^{-} \times M^{-}$and on $T M^{+}$. We take a smooth positive function $\tau:]-1,+\infty\left[\rightarrow \mathbb{R}\right.$ which satisfies $\tau^{-1}(\{0\})=[0,+\infty[$. A local chart around boundary points of $T \overline{M^{+}}$is provided by the following map:

$$
E_{G}: \mathcal{V}(T M) \rightarrow \mathcal{V}(G), \quad\left\{\begin{array}{l}
(y, V) \mapsto(y, V) \text { if } y \in \overline{M^{+}} \\
(y, V) \mapsto\left(y, \exp _{y}\left(-\tau\left(k_{y}\right) V\right)\right) \text { if } y \in M^{-}
\end{array}\right.
$$

where \exp is the exponential map of the Riemannian manifold $M, \mathcal{V}(T M)=\left\{(y, V) \in T M ;-\tau\left(k_{y}\right) V \in\right.$ $\left.\operatorname{dom}\left(\exp _{y}\right)\right\}$ and $\mathcal{V}(G)$ is a neighborhood of $G^{(0)}$ in G. The groupoid G is called the tangent bundle of X.

Following the construction of A. Connes for smooth manifolds [3], we define the tangent groupoid of X in the following way:

$$
\mathcal{G}=M \times M \times] 0,1] \cup G \times\{0\} \rightrightarrows M \times[0,1]
$$

The groupoid \mathcal{G} is the union of the groupoid $G \times\{0\} \rightrightarrows M \times\{0\}$ and the pair groupoid over M parametrized by]0,1]. We equip \mathcal{G} with a structure of smooth groupoid similarly as we did for G.

The groupoid G is amenable [1] so that its reduced C^{*}-algebra coincides with the maximal one and it is nuclear. The same occurs for \mathcal{G}. We denote respectively $C^{*}(G)$ and $C^{*}(\mathcal{G})$ these C^{*}-algebras. Moreover, up to isomorphisms, these C^{*}-algebras do not depend on the map τ used to define the smooth structure of G.

2. The Dirac element

The partition $M \times\{0\} \cup M \times] 0,1]$ of $\mathcal{G}^{(0)}$ into a saturated open subset and a saturated closed subset induces the following exact sequence of C^{*}-algebras [5]:

$$
0 \longrightarrow C^{*}\left(\left.\mathcal{G}\right|_{M \times j 0,1]}\right) \longrightarrow C^{*}(\mathcal{G}) \xrightarrow{e_{0}} C^{*}\left(\left.\mathcal{G}\right|_{M \times\{0\}}\right)=C^{*}(G) \longrightarrow 0,
$$

where the first map is the inclusion and e_{0} is the evaluation map at 0 . The C^{*}-algebra $C^{*}\left(\left.\mathcal{G}\right|_{M \times] 0,1]}\right)$ is isomorphic to $\left.\left.\mathcal{K} \otimes C_{0}(] 0,1\right]\right)$ which is contractible. So, since $C^{*}(\mathcal{G})$ is nuclear, the element $\left[e_{0}\right]$ of $K K\left(C^{*}(\mathcal{G}), C^{*}(G)\right)$ corresponding to e_{0}, is invertible. We denote $\left[e_{0}\right]^{-1} \in K K\left(C^{*}(G), C^{*}(\mathcal{G})\right)$ its inverse. Let $e_{1}: C^{*}(\mathcal{G}) \rightarrow$ $C^{*}\left(\left.\mathcal{G}\right|_{M \times\{1\}}\right)=\mathcal{K}$ be the evaluation map at 1 . We let b be the generator of $K K(\mathcal{K}, \mathbb{C})$. We set:

$$
\partial=\left[e_{0}\right]^{-1} \underset{C^{*}(\mathcal{G})}{\otimes}\left[e_{1}\right] \underset{\mathcal{K}}{\otimes} b \in K K\left(C^{*}(G), \mathbb{C}\right)
$$

The algebra $C(X)$ maps to the center of the multiplier algebra of $C^{*}(G)$. Let $\Psi: C^{*}(G) \otimes C(X) \rightarrow C^{*}(G)$ be the morphism induced by multiplication and $[\Psi]$ be the corresponding element in $K K\left(C^{*}(G) \otimes C(X), C^{*}(G)\right)$.

The Dirac element is then defined as

$$
D=[\Psi] \underset{C^{*}(G)}{\otimes} \partial \in K K\left(C^{*}(G) \otimes C(X), \mathbb{C}\right)
$$

3. The dual Dirac element

We are looking for an element λ in $K K\left(\mathbb{C}, C^{*}(G) \otimes C(X)\right)$, that is a continuous family $\left(\lambda_{y}\right)_{y \in X}$ of elements of $K K\left(\mathbb{C}, C^{*}(G)\right)$. In order to be dual to the Dirac element D, λ is constructed so that:
(i) λ is in the image of $\left(i_{\mathcal{O}}\right)_{*}: K K\left(\mathbb{C}, C^{*}\left(G \times\left. X\right|_{\mathcal{O}}\right)\right) \rightarrow K K\left(\mathbb{C}, C^{*}(G \times X)\right)$ where \mathcal{O} is an open subset of $\mathcal{U}=\left\{(x, y) \in M \times X \mid k_{x}<1, k_{y}<1\right\} \cup\{(x, y) \in M \times X \mid d(x, y)<1\}$.
(ii) The equality $\lambda \otimes_{C^{*}(G)} \partial=1 \in K^{0}(X)$ holds.

We first assign to each point y of X an open subset O_{y} of M which is a ball centered on y when $k_{y} \geqslant 1$, which is contained in M^{-}when $k_{y} \leqslant 1 / 2$ and equal to M^{-}when $k_{y} \leqslant \varepsilon$ (where $0<\varepsilon<1 / 2$). Furthermore the set $\mathcal{O}=\bigcup_{y \in X} O_{y} \times\{y\}$ is an open subset of $M \times X$ contained in \mathcal{U}.

Notice that $K\left(C^{*}\left(G \mid O_{y}\right)\right) \simeq \mathbb{Z}$ for each $y \in X$.
We pull back the vector bundle of differential forms on M to G and \mathcal{G} using their range maps and then to $G \times X$ and $\mathcal{G} \times X$ using the first projection. We denote all these bundles by the same letter Λ. The following step is the construction of a continuous family $\left(\beta_{y}\right)_{y \in X}$, where $\beta_{y}=\left(F_{y}, C^{*}\left(\left.G\right|_{O_{y}}, \Lambda\right)\right)$ is an element of $E\left(\mathbb{C}, C^{*}\left(\left.G\right|_{O_{y}}\right)\right)$ which class is a generator of $K\left(C^{*}\left(G \mid o_{y}\right)\right) \simeq \mathbb{Z}$.

When O_{y} is a subset of M^{+}it is natural to state $F_{y}=a_{y}$ where $a_{y} \in C_{b}^{\infty}\left(T^{*} O_{y}\right.$, End $\left.\Lambda\right)$ is the symbol of a pseudo-differential operator G_{y} which satisfies:

- G_{y} belongs to $\Psi_{c}^{0}\left(O_{y}, \Lambda\right)+C_{b}^{\infty}\left(O_{y}\right.$, End $\left.\Lambda\right)$ and $G_{y}^{2}-1$ belongs to $\Psi_{c}^{-1}\left(O_{y}, \Lambda\right)$,
- G_{y} is of the form $G_{y}=\left(\begin{array}{cc}0 & G_{y}^{-} \\ G_{y}^{+} & 0\end{array}\right)$ with respect to the usual decomposition of $\Lambda=\Lambda^{\mathrm{ev}} \otimes \Lambda^{\text {odd }}$,
- G_{y}^{+}is surjective and $\operatorname{Ker}\left(G_{y}^{+}\right)=\mathbb{C} \cdot \epsilon_{y}$ where ϵ_{y} belongs to $C_{b}^{\infty}\left(O_{y}, \Lambda\right)$,
- the family $\left(G_{y}\right)_{\substack{y \in X \\ k_{y}>\varepsilon}}$ defines a continuous section of $B(H)$ where H is the bundle $\bigcup_{\substack{y \in X \\ k_{y}>\varepsilon}} L^{2}\left(O_{y}, \Lambda\right)$.

The existence of such an operator is a consequence of Theorem 19.2.12 of [6].
When y comes closer to the singularity c, we gradually pass from a situation where $\left.G\right|_{O_{y}}=T O_{y}$ to a situation where $\left.G\right|_{O_{y}}=O_{y} \times O_{y}$. The pseudo-differential calculus on groupoids, first introduced by A. Connes in [2] (see also [4]), enables us to construct a continuous family $\left(F_{y}\right)_{y \in X, k_{y}>\varepsilon}$ such that up to a compact operator $F_{y}=a_{y}$ when $\left.G\right|_{O_{y}}=T O_{y}$ and $F_{y}=G_{y}$ when $\left.G\right|_{O_{y}}=O_{y} \times O_{y}$. Thus we "replace" the symbol a_{y} by the operator G_{y}.

The last case is when O_{y} becomes equal to M^{-}. We first choose an appropriate extension of F_{y} which belongs to $B\left(L^{2}\left(O_{y}, \Lambda\right)\right)$ into an element of $B\left(L^{2}\left(M^{-}, \Lambda\right)\right)$. Afterwards, thanks to the properties of the operator G_{y} listed above, we can replace F_{y} by a constant operator F_{c}.

We construct in this way a continuous family β_{y} of elements of $E\left(\mathbb{C}, C^{*}\left(\left.G\right|_{O_{y}}\right)\right)$. This family induces an element β of $K K\left(\mathbb{C}, C^{*}\left(G \times\left. X\right|_{\mathcal{O}}\right)\right)$. We set $\lambda=\left(i_{\mathcal{O}}\right)_{*}(\beta)$. The dual-Dirac element λ satisfies the properties (i) and (ii) mentionned above.

4. The Poincaré duality

Theorem 4.1. The Dirac element D and the dual-Dirac element λ induce a Poincaré duality between the C^{*}-algebras $C^{*}(G)$ and $C(X)$, that is:

$$
\lambda \underset{C^{*}(G)}{\otimes} D=1_{C(X)} \in K K(C(X), C(X)) \quad \text { and } \quad \lambda \underset{C(X)}{\otimes} D=1_{C^{*}(G)} \in K K\left(C^{*}(G), C^{*}(G)\right)
$$

Idea of the proof. Let us consider the morphisms $\Psi^{\prime}, \Delta^{\prime}: C^{*}(G \times X) \otimes C(X) \rightarrow C^{*}(G) \otimes C(X)$ given by $\Psi^{\prime}(f \otimes g \otimes h)=\Psi(f \otimes h) \otimes g$ and $\Delta^{\prime}(f \otimes g \otimes h)=f \otimes \Delta(h \otimes g)$ where $\Delta: C(X) \otimes C(X) \rightarrow C(X)$ is the multiplication map. Their restrictions $C^{*}(G \times X \mid \mathcal{O}) \otimes C(X) \rightarrow C^{*}(G) \otimes C(X)$ are homotopic, hence, since
$\lambda=\left(i_{\mathcal{O}}\right)_{*}(\beta)$, the following equality holds:

$$
\lambda \underset{C^{*}(G)}{\otimes}[\Psi]=\lambda \underset{C(X)}{\otimes}[\Delta] .
$$

This ensures that

$$
\lambda \underset{C^{*}(G)}{\otimes} D=\left(\lambda \underset{C^{*}(G)}{\otimes} \partial\right) \underset{C(X)}{\otimes}[\Delta]=1_{C(X)} .
$$

In order to show the second equality, we study the invariance of the element $\lambda \otimes_{C(X)}$ [Ψ] under the fip automorphism f of $C^{*}(G \times G)$, that is the automorphism induced by $(\gamma, \eta) \in G \times G \mapsto(\eta, \gamma)$. The motivation comes from the equality

$$
\begin{aligned}
& \left((\lambda \underset{C(X)}{\otimes}[\Psi])_{C^{*}(G \times G)}^{\otimes}[f]\right) \underset{C^{*}(G)}{\otimes} \partial=\left(\lambda \underset{C^{*}(G)}{\otimes} \partial\right) \underset{C(X)}{\otimes}[\Psi]=1_{C^{*}(G)}, \quad \text { which implies } \\
& \lambda \underset{C(X)}{\otimes} D-1_{C^{*}(G)}^{\otimes}=\left((\lambda \underset{C(X)}{\otimes}[\Psi]) \underset{C^{*}(G \times G)}{\otimes}[\operatorname{id}-f]\right){\underset{C}{* *}(G)}_{\otimes}^{\otimes} .
\end{aligned}
$$

If B is a symmetric geodesically convex neighborhood of the diagonal of $M^{+} \times M^{+}$contained in the range of exp, then the flip automorphism of $C^{*}(T B)$ is homotopic to identity. Let $\left.C=L \times\right]-1,1[\subset M$ and $F=$ $M \times M \backslash C \times C$. We denote by $r_{*}: K K\left(C^{*}(G), C^{*}(G \times G)\right) \rightarrow K K\left(C^{*}(G), C^{*}\left(G \times\left. G\right|_{F}\right)\right)$ the morphism induced by the restriction r.

Using again that λ is in the image of $\left(i_{\mathcal{O}}\right)_{*}$ and that $\mathcal{O} \cap M^{+} \times M^{+}$is a small enough neigborhood of the diagonal, we show that $r_{*}\left(\lambda \otimes_{C(X)}[\Psi]\right)$ is invariant under the flip automorphism of $C^{*}\left(G \times\left. G\right|_{F}\right)$. Then, the long exact sequence in $K K$-theory associated to:

$$
0 \longrightarrow C^{*}\left(G \times\left. G\right|_{C \times C}\right) \xrightarrow{i C_{\times C}} C^{*}(G \times G) \xrightarrow{r} C^{*}\left(G \times\left. G\right|_{F}\right) \longrightarrow 0
$$

ensures that $\left(\lambda \otimes_{C(X)}[\Psi]\right) \otimes_{C^{*}(G \times G)}[i d-f]$ belongs to the image of $\left(i_{C \times C}\right)_{*}: K K\left(C^{*}(G), C^{*}\left(G \times\left. G\right|_{C \times C}\right)\right) \rightarrow$ $K K\left(C^{*}(G), C^{*}(G \times G)\right)$. This enables us to show that $\lambda \otimes_{C(X)} D-1_{C^{*}(G)}$ is in the image of $\left(i_{C}\right)_{*}: K K\left(C^{*}(G)\right.$, $\left.C^{*}\left(\left.G\right|_{C}\right)\right) \rightarrow K K\left(C^{*}(G), C^{*}(G)\right)$ where i_{C} is the inclusion morphism of $C^{*}\left(\left.G\right|_{C}\right)$ into $C^{*}(G)$.

On the other hand the equality $\lambda \otimes_{C^{*}(G)} D=1_{C(X)}$ ensures that $\lambda \otimes_{C(X)} D-1_{C^{*}(G)}$ is in the kernel of the map $\left(\cdot \otimes_{C^{*}(G)} D\right): K K\left(C^{*}(G), C^{*}(G)\right) \rightarrow K K\left(C^{*}(G) \otimes C(X), \mathbb{C}\right)$. To finish the proof we show that this map is injective in restriction to the image of $\left(i_{C}\right)_{*}$. This last point comes from the fact that the inclusion $i^{\mathcal{K}}$ of $C^{*}\left(\left.G\right|_{M^{-}}\right) \simeq \mathcal{K}$ into $C^{*}\left(\left.G\right|_{C}\right)$ induces a $K K$-equivalence between \mathcal{K} and $C^{*}\left(\left.G\right|_{C}\right)$; and $\left(\cdot \otimes_{C^{*}(G)} D\right) \circ\left(i_{C}\right)_{*} \circ\left(i^{\mathcal{K}}\right)_{*}=e_{c}^{*}$ where $e_{c}^{*}: K K\left(C^{*}(G), \mathbb{C}\right) \rightarrow K K\left(C^{*}(G) \otimes C(X), \mathbb{C}\right)$ comes from the evaluation map at $c, e_{c}: C(X) \rightarrow \mathbb{C}$.

A consequence of the preceding theorem is a Poincaré duality between $C_{0}\left(T^{*} \overline{M^{+}}\right)$and $C_{0}\left(M^{+}\right)$. Thus we get a second Poincaré duality for manifolds with boundary, the first one has been stated by G. Kasparov in [7] for the algebras $C_{0}\left(T^{*} M^{+}\right)$and $C\left(\overline{M^{+}}\right)$.

References

[1] C. Anantharaman-Delaroche, J. Renault, Amenable Groupoids, in: Monograph. Enseign. Math., Vol. 36, L'Enseignement Mathématique, Genève, 2000.
[2] A. Connes, Sur la théorie non commutative de l'intégration, in: Lecture Notes in Math., Vol. 729, Springer, 1979, pp. 19-143.
[3] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[4] A. Connes, G. Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984) 1139-1183.
[5] M. Hilsum, G. Skandalis, Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov, Ann. Sci. École Norm. Sup. 20 (4) (1987) 325-390.
[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, III, in: A Series of Comprehensive Studies in Mathematics, SpringerVerlag, Berlin, 1985.
[7] G.G. Kasparov, Equivariant $K K$-theory and the Novikov conjecture, Invent. Math. 91 (1) (1988) 147-201.

[^0]: E-mail addresses: C.Debord@uha.fr (C. Debord), Jean-Marie.Lescure@math.univ-bpclermont.fr (J.-M. Lescure).
 1631-073X/03/\$ - see front matter © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. doi:10.1016/S1631-073X(03)00124-9

