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Abstract

Results concerning the problem of motion of test particles in the context of solitary wave solutions of the Einstein-nonlinear
wave system are announcda.cite thisarticle: D.M.A. Stuart, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
On étude le probleme du mouvement des ondes solitaires dans le systéeme qui comprend I'équation d’Einstein et I'équation

des ondes non linéaireBour citer cet article: D.M.A. Stuart, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

The Einstein nonlinear wave system is the following system of evolution equations for a pseudo-Riemannian
metricg = g, dx* dx” on a space-timkl and a functiorp : M — C:

1
Ry — Eg,wR =8rGTy, Ogp + V' (¢) =0, (1)

whereR,,, = R, (0), R = R(Q) are, respectively, the Ricci and scalar curvaturesaridg is the covariant wave
operatorfg¢ = —|detg| ~/23, (|detg|/2g" 3, ¢). The energy momentum tensBy,, is given by

1
le(g, ¢ V)= <8,u¢v o) — Eg;w((a,u(bv av¢>glw + 2V(¢)) (2)

with (a, b) = (@b + ab)/2 fora, b € C, andg"” the inverse matrix of,,, (induced inner product on the cotangent
space). In the coordinate systefm*} greek indices run through, @, 2, 3, latin indices through ,22, 3, and

x% = . The metric is taken to have signature 4+ ++) so that the system is essentially hyperbolic (modulo
diffeomorphism invariance).
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In general relativity the metrig, obtained as a solution of the Einstein equation, represents the influence of the
matter fieldg on the space time, i.e., the gravitational field produceg biyn turn the metric influences the matter
field via the appearance gfin the equation for. Recall (e.g., [10, Chapter 3]) that it is a consequence of the
principle of equivalence thattast particle i.e., a particle of small size and mass, should move along a geodesic
with respect tay. More precisely if, at each time ¢ is zero, or close to zero, outside of a small region centered at
£(1), and if the energy is sufficiently small, then the curve &(¢) must be a geodesic to highest order; of course a
proper understanding requires a precise formulation of the meaning of “small” and “to highest order”. On the other
hand for a specific matter field suchgsn which the time evolution is governed by a well-posed Cauchy problem
for (1), this geodesic motion should be analytical consequence of the equations (for appropriate initial data).
A proof of this is here announced in the context of (1) under conditions which give a precise formulation of the
notions mentioned above. (The full proof will appear in [7]; the simpler case of a given metric, corresponding
to motion in an external gravitational field, is treated in [8], see the announcement [9].) To obtain a precise
mathematical problem it is necessary to specify the type of initial data and solution which corresponds to a particle
as well as the limiting process corresponding to the test particle limit. This is the purpose of the next section.

2. Solitons and the test-particle limit

In the caseg = n = —dr2 + Y2, (dx*)2, the Minkowski metric, and’(¢) = ”’72|¢>|2 — G(|¢|) the second
equation of (1) becomes

32p — Ap +m?p = B(1p))o, (3)

whereG'(s) = B(s)s. For a large class ofi this equation admits a class of solitary wave solutions caileat
topological solitonf the form:¢ (¢, x) = € £,,(x), with f,, a positive, exponentially decreasing radial function

and 0< w? < m2. Existence, uniqueness and stability are well understood (see [1,5,3,6] and references therein).
Application of the Poincaré group gives an 8-dimensional family of solutions parametrised (at each time) by
frequencyw, phased, centreé and momentuny (or velocity). The stability of these solutions is determined
entirely byw: the subset = {w: %(—wllfwlliz) > 0} C (—m, m) is non-empty for some but not all, andw € |

ensures modulational stability in the sense given in [6]. This characterisation first appeared in work of Strauss and
Shatah (referenced in [3]).

Since the energy is exponentially localisedximboutx = & the non-topological solitons can be regarded as
particle-like and hence to provide an appropriate context in which to study the test-particle limit. As discussed,
above this limit involves two small parameters: the particle size and the energy (or amplitude). Correspondingly it
is necessary to introduce a two parameter family of potentials

Ve.s(9) = 8%2V(5719). )

Under this scaling (1) becomes
1
Dgp =0672V(57%¢),  Ruv — 5810 R =87G T (9, ¢ Veo) (5)

to be studied in the limit of small, § (see below). Observe that, in the flat cgse 5, a functiong (¢, x) solves
(3) ifand only if ¢ (¢ /¢, x /) solves the first equation in (5), so thatletermines the size of the soliton ahds
amplitude. (Also note that the scaling of the potential in (4) is equivalent to rescaling the metric—2g and
Newton’s constan® — §2G.)

The aim will be to show that given a vacuum solution to (5) (i.e., a solution gvih0) there is, fore, § small,
a nearby solution in which~1¢ is close to a non-topological soliton concentrated along a curve which is close
to a time-like geodesic. It is to be expected that restrictions on the manner in svlditlnd to zero will arise: in
physical terms for geodesic motion it is necessary not only that the energy and size of the test particle approack
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zero but also that the energy density approach zero at a rate depending lipaéinis regard the theorem will be
proved under the assumption that> 0 with

§< Cel (6)

for certaing to be specified. Analytically this type of restriction arises as follows:

(i) the geodesic equation itself involves first derivatives of the metric coefficients, so that it is to be expected that
at leastC?! control of the deformation of the metric is required, which in turn follows frtifncontrol,s > 2.5
which can be deduced from an estimatefpy in Hs 1

(ii) the standard local existence theory for the Einstein equation igiforH*, s > 2.5, so that uniform estimates
of T, € H*~1will be required. It thus turns out that any improvements in local existence theory (i.e., reducing
the value ofs for which well-posedness holds) would probably not impact the present problem on account of
the restriction entailed by (i).

In fact the present derivation afiform ine, § estimates fokp € H* requiress > 3 > 2.5 which leads to the
hypothesig; > 7/4 in the main theorem below, in contrast to the presumably optimal conditio/2.

3. Results

Assume given a space tinié = [0, to] x R3, foliated by space-like hypersurfac®s = {x0 =t = constan} ~
R3, with metric of the formy = ygodr? + Vij dx’ dx/ with vij the induced Riemannian metric on the space-like
hypersurfaces given by the level setstoAssume further thag is a solution of the vacuum Einstein equation,
(i.e., it is Ricci flatR,,, (y) = 0), with regularitydy (r) € H3(Xx,) and there exists a constakig such that

K0_2<—V00<K§, K0_25ij < Vij <K§3ij-

Here and below stands for arbitrary space—time partial derivative.

The aim is to construct perturbatively a solution of (5) witht¢ close to a rescaled non-topological soliton.
To this end consider a smooth potential functibig) as above with the property that the corresponding
wave equation (3) admits soliton solutiorfs(x) €' which are stable in the sense of [6] far= wo, i.e.,
wp € |. The following definition gives a starting point for the perturbative construction, obtained by “freezing
the coefficients”. This means to construct a soliton centeredratwe evaluate the metric coefficients there:
q(t) = lyoo(t, X)) Y2, hij(t) = y;; (t,x(t)). SOh;;(¢) is the inner product offy) ¥, with corresponding norm
| - |n; also writeh'/ (¢) for the induced inner product on the cotangent sp@(:gz, (represented by the inverse
matrix).

Definition 3.1. Given the metricy and a curve — (x(¢), p(t)) € T*X and a functiorr > (w(1),0(1)) € R? a
soliton centred at(¢) with momentunp(z), frequencyw (t) and phasé(¢) is defined by the formula

$5(t, %) = fu(e P Pix =) + Qi (x —=x)|,) explie (6 — wp, (x —x)7)], 7)
where P; is the projection operator along the direction defined by the veladity) = g (1)h/* (t)pi (1) /7 () and

y (t) is the Lorentz contraction factgr(¢) = \/1 + p;j (O)pk(1)hi*(1). Finally Q, is the orthogonal complement of
P, with respect to the inner product defined by the metric at the pd@int

Remark. This is a definition which is motivated by the fact thatf is a flat constant metric and = ur
there is an exact solution of this form given by application of a Lorentz transformation to the basic solution
@t x) =€ f,(x).
The next theorem asserts the existence of solutions clasgito(5) with g close toy as long ax(#) is close to
a time-like geodesic. Thus let the cumve> (E(¢), m (¢)) € T* X, be a time-like geodesic with respectyq(lifted
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to the contangent bundle). Given a (stable) frequestcy | and anydgy define

$6() = fuo(e 2|7 Po(x — £(0) + Qo(x — £(0)) |, ) explie (60 — m(0) ;(x — £(0)))] 8)

with ug, Po, Qo, Yo, qo, ho defined in the same way ast), P;, Q;, ¥(t), q(t), h(t) above with&(0), = (0)
used instead of(z), p(t). Consider the initial value problem for (5) with the following initial data:

e 571(¢(0), 3,¢(0)) bounded inH2 x H? and with
[ (576 (0) — ¢5. £8~101 + suo - dx g — iw0q005/70) | 4,2 < 1.

Here H; is the scaled Sobolev norfiy (|5, = 3}, 1—o&2*!=3[10* £ 112,
e (9(0), 3,9(0)) such that|a(g — y)|| 2 < c2¢ att = 0 and the constraint equations are satisfied.

Theorem 3.2.Assumg6) holds forg > 7/4 andt — (§(¢), m (¢)) € T* X, is a time-like geodesic. Then there exist
positive numbers,, t., &, such that fore < ¢, the solution to(5) with the initial data just described exists for
0 <t < t, Wheret, is independent of, and there exists — (w, 6, X, p)(1) € C1([0, ,]; R? x T*X) such that,
with ¢5 as above,

Og}g*[ﬂa(g - 7’)HH2(2,) + H5_1¢ - ¢§ “H}(Z,) + 8“ O (3_l¢ - ¢§)}

+[x(t) —E®)| + |p(1) = w@)| + |0 (1) — wo|] < cxe.

L2(Z))

Remarks. (i) The nonlinear wave equation f@r is treated using a generalisation (to allow perturbation of the
metric) of the symplectic modulation approach [6,8] combined with new estimaté&g fésp) in higher Sobolev
norms uniform ine ase — 0. It is here that the restriction > 7/4 comes in, as opposed to the range 3/2
which is presumed to be optimal in view of the remarks at the end of Section 2.

(i) The assumption that the initial data satisfy the constraint equations is easily satisfied since in this situation
the constraint equations can be solved using the implicit function theorem [2].

(iii) The Einstein equation is treated using the gauge condgtﬁ’ﬁmFa’g (9 — Foﬁ%(y)) = 0 to obtain a hyperbolic
equation forg — y (essentially as in the original existence theorem of Choquet-Bruhat) with the sharpening of the
estimates observed by [4].
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