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Abstract

We propose a mixed boundary finite element discretization of the Electric Field Integral Equation for which we have an
Inf=Sup condition which is uniform in both the mesh-widthand the wave-numbek, for small enough: andk. For this
equation we construct a preconditioner such that the spectral condition number of the preconditioned system is also bounde
independently ok and#. To citethisarticle: SH. Christiansen, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Nous proposons une méthode d’éléments finis frontiere mixtes pour I'équation intégrale du champ électrique pour laquelle
nous démontrons une condition Inf-Sup uniforme par rapport au pas du mdillag@au nombre d’'ondé, pour i et k
suffisamment petits. Pour cette équation nous construisons un préconditionneur tel que le conditionnement spectral du system
préconditionné soit borné indépendamment:d k. Pour citer cet article: S.H. Christiansen, C. R. Acad. Sci. Paris, Ser. |
336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. The continuous problem

Let $2_ be a bounded domain iR® with a smooth boundary . The exterior domaiiR3\ (£2_ U I') is denoted
£2. and the outward normal off is denoted:. The tangential trace operator is denofgedand the normal trace
operator is denoteg.
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Let Z be a positive constant, called impedance. For each wavenuinbed the time-harmonic Maxwell
equations (in any given open region®t) are:

CUrlE =+ikZH, curlH = —ik/ZE. Q)

Given a family(EI®, H,i”c) for small positivek of solutions of Maxwell's equations on a neighborhoodofve
are interested, for eadh in the solution(Ey, Hy) of Maxwell's equations in2_ or £2, satisfying the perfect con-
ductor boundary conditiopr E; = —yTE}"°, and (in the exterior domain) the Silver—Milller radiation condition.

We use potentials to represdiy. Let G denote the standard Green kernelaf — k2 and let®;, be the single
layer potential defined on scalar or tangent fieldm I by:
gklx—yl

(qbku)(y):/Gk(x,y)u(X)dx, Gk(x,y)=47-
7T|x — y|
r

We represenEy as an electric field generated by a tangent figldn I" (the electric current). More precisely
we put Ex(y) = (grad div+-42) (uy). Letting Ay = —yr(grad div+k2) @y, the problem is to solve the Electric
Field Integral Equation (EFIEAxux = y1E}°.

The operator is continuous fronX = H(E/z(l") to its dualX’ = Hr_O%/Z(F) (see, e.g., [5]), and the EFIE can
be put in variational form:

(2)

up € X, Vu' € X, (Agug, u') =(EQC, o). (3)
We denote by, the associated bilinear form; its expression on smooth fields is:
ap(u,v) = // Gr(x, y)(diVu(x) divv(y) — K2u(x) - v(y)) dx dy. 4)
I'xI’

Following Bendali [1] this variational problem is solved with the Galerkin method on div-conforming Finite
Element spaces on the boundary. At low frequencies one sees that the problem is that the limit of the operatol
Ay ask — 0, is degenerated; in fact the limit is not even Fredholm since its kernel contains the infinite dimensional
space rotH2(I).

The object of this paper is to compute approximationg;oh a stable way for smak.

2. The continuousremedy
For simplicity we suppose thdt is connected and simply connected. As remarked by de La Bourdonnaye [2],
if we put V = grad H/2(I") andW = rotHY2(I"), thenV and W are closed irX and we have the decomposition:
X=VaWw. (5)

We putS = HY2(I"), and for any spac® of scalar fields o™ we putY® = {u € Y: (1, 1) = 0}. Also, for any
Hilbert spaceY, Y* denotes the Hilbert space of continuous linear form§ on

Let & :V x S§* — X denote the isomorphism defined B (v, p) = v + k~1rotp. The four blocks of the
bilinear forma; onV x S* defined by, ((v, p), (v/, p")) = ar(Ex (v, p), Ex(V', p')), have the expression:

<H Gi(x, y)(divo(x) dive' (y) — k2v(x) - v'(y)) dxdy  —k [[ Ge(x, y)rotp(x) - v'(y) dx dy ) (6)
—k [[ Gr(x, y)v(x) - rotp/(y) dx dy — || Gk(x, y)rotp(x) - rotp’(y)dxdy )’
Since there i€ > 0 such that

YveV |vllx <Cldivully-12(p), VpesS® lpls < Clirotplly-1z ). (7

the two diagonal blocks are coercive hence invertibléfer0. We remark also that the coupling blocks vanish for
k = 0. Concerning the right-hand sides we remark that

k_l(yTE,i{nC, rotp’) = iZ(ynH,inC p'). (8)
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If for instance the family of incident waves consists of plane waves:
E(x) = Eg€ko*, H"(x) =1/ZEg x o €%, (9)

then the limit of yrE}® is a surface gradient anghH,"® has a non-zero limit. Thus both components of the
right-hand sides considered as elementd/6fx S** have a non-zero limit a& — 0. It follows that with the
decompositiom, = E (vk, px) bothv, and p; have a non-zero limit as— 0.

We now turn to the preconditioning of the variational problem associated with (6) and we recall the remark made
in [3,4] that a preconditioner is obtained by an invertible bilinear form on a dual space. Since the off-diagonal terms
are small in norm and compact it is enough to precondition the two diagonal blocks.

For the first block, we proceed as follows. Pt = grad H/2(I"). Then we remark that the2l(I")-bilinear
form extends continuously to an invertible bilinear form Bhx V. Let ®1: V* — V’ be the corresponding
isomorphism. We remark furthermore thiat is a closed subspace otFIL(Z(F), hence we can use the bilinear
form associated with the single layer operator on tangent fields as a preconditioner.

For the second block, the induced operatosdr-> S** is the main part of the hypersingular operator appearing
in acoustics. It can be efficiently preconditioned by the single layer operator [6,3]. As a matter of notations we put
S’ = H=Y2(I") so that the B(I")-bilinear form extends continuously to an invertible bilinear form$hx S*,
and let®,: §** — S’* be the corresponding isomorphism.

Thus, onV’ x §’* we use the bilinear forrh whose block expression is:

<J"f Golx, y)v(x) - v'(y) dxdy 0 ) (10)
0 — J] Go(x, y)q(x)q'(y)dxdy -

Letting @ : V* x §** — V' x §* be the map componentwise induced®y and®,, and associating an operator

AV x §* — V* x §* with g, andB: V' x §'* — V™ x §’** with b we have:

Proposition 2.1. Thereexistse > 0 such that for all £ € [0, ] the operator O*BO A isan automorphismof V x S°®
and all terms of the composition are isomor phisms whose hormand norm of the inver se are bounded independently
of kin[O, ¢].

3. Discretization

SinceV = grad H/(I") it would be cumbersome to implement a conforming finite element discretization of
the variational problem o x S°. Instead we propose the following non-conforming method.

Suppose we have (finite dimensional) subspatgeof X N Hgiv(F) and s, of S N HL(I"), which are stable
under complex conjugation, which are such thiatontains the constant fields and we have an exact sequence:

rot div

Sp — X —> L2(IN). (11)
We defineV;, by:
Vi={ueXy VpeS, (u,rotp)=0}. (12)

We keep the notatiofi; to denote the extension af to X x S whose block-wise expression is given by (6). We
solve the system: Fintby, prn) € Vi x Sy, such that for al(v’, p’) € Vi, x Sp; we have:

ar (ks prn)» V', p) = (EJS ') +iZ(H - n, p'). (13)
Recall the definition of the gapi (Vi, V) = sup,, cy, infuev [lvn — vl x/llva | x . Our first proposition concerns the
well posedness of the discrete system.

Proposition 3.1. If 8x (Vy,, V) — 0ash — Othenthereexistse > 0, hp > 0 and C > 0 such that for all k£ € [0, ¢],
all & < hg we have:

(@, p). @ P11 (14)

inf =
W.2)EVixSE (v prevyxsy 10 P xxs IV, pP)llxxs ~ C
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In general we do not have a basisf, hence solving this system requires some extra work. In our case this
will be carried out by the preconditioner which we define now. It should be checked that in what follows only bases
of X, andsS; are needed.

Let ®1,: X; — X, denote the map which to arfye X} associates the solution of:

veVy, YW eV, (vv)=L0). (15)
Fort € X}, ®1,£ can be computed simply as the solutioof:
peSy, ¥Vp' €Sy (rotp,rotp’) =L(rotp’), ueXy Yu' eX, (u,u’y=L0u)— (rotp,u’). (16)
We define the discretizatioRy, of @ to be the map which té € S;; associates the solutignof:
peES,, Vp' eSS, (p.p)=Ep). (17)
Let®,: X} x S; — X x S, be the association @1, and©2,. We keep the notatioh for the extension of
b from V' x §'* to H{l/z(l“) x §" keeping the block expression (10). L8t : X, x S, — X x Sj; be the map
induced byb. We also denote byl;; the map induced bg; on X, x S, — X} x S.
One sees that the operatef; 3, ®;, is a surjection ontd/, x Sp. Fort € (X, x Sp)*, @, B,6,L depends only
on €|y, xsp - It follows that the conjugate gradient algorithm fdy, on X; x Sp, preconditioned byo; 3,6,

yields iterates inVj, x S; converging to the solution of (13). Morevové};Bh@h,ikh determines a bijection
Vi x Sp — Vi x Sp (denotedAy, in what follows) whose spectral condition numbgy is bounded independently
of k in an interval[0, ¢].

More precise estimates af, and the convergence of Krylov subspace methods, depend on the actual Galerkin
spaces. Examples of finite element spaces which satisfy the above conditions include the case where we hav
quasi-uniform triangulations of' and take forX; Raviart—-Thomas vector FE of degreeand for S, the scalar
continuous piecewis®”*+! FE. Then we also have the following stability property:

Proposition 3.2. Thereexists ¢ > 0, hg > 0 and C1, C2 > 0 such that for all k € [0, ], all 2 < hg we have for all
(u, p) € Vi x S

i 2
|4k, g < Call@, p)llg with [, p)lg=lelg ) + 121 - (18)

+ P12y (19)

HAkh (u, p) ” -1/2 2 Cz_lH (u, p) ”—1/2 with H (u, p) H2—1/2 = ”“”aai&ﬂ(p)

It follows that for (k, k) in the rangdO, €] x ]0, ko[, the spectral radius ol is smaller tharC1, while that of
its inverse is smaller tha@i;, hencexy, is bounded byC1C».
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