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Abstract

Given two germs of hyperbolic vector fields associated to autonomous ordinary differential equationsẋ = Ax + · · · and
ẏ = By + · · ·, wherex, y ∈ Rn, and A and B are n × n matrices, we prove that under some algebraic conditions on
eigenvalues of the matrices and genericity condition on the nonlinear terms, they are at leastC1 conjugate if and only ifA and
B are similar.To cite this article: Z. Ren, J. Yang, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur la classification C1 des champs de vecteurs hyperboliques.Etant donnés deux germes de champs de vect
hyperboliques définis par des équations différentielles autonomesẋ = Ax + · · · et ẏ = By + · · ·, où x, y ∈ Rn, A et B sont
des matrices d’ordren, on démontre que, sous certaines conditions algébriques sur les valeurs propres des matric
conditions de non dégénérescensce des terms nonlinéaires, ils sont au moinsC1 conjuqués si et seulement siA et B sont
semblables.Pour citer cet article : Z. Ren, J. Yang, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction and main results

Denote byVA(n) the set of germs at the origin of hyperbolic vector fieldsXA(n) associated to autonomou
ordinary differential equations

ẋ = Ax + · · · , x ∈ Rn, (1)

whereA is the differential ofXA(n) at the origin. The present paper is devoted to studying theC1 classification of
a generic vector fieldXA(n) ∈ VA(n).

Throughout the paper, we shall assume that the vector field (1) isC∞, although in many cases, the results a
hold for vector fields having only finite degree of smoothness.

The main results of the present paper are the following theorems.
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1631-073X/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00173-0
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Theorem 1.1.Let vector fieldXA(n) be associated to the differential equation(1) which is assumed to have
generic2-jet. Then

(i) for n � 4, the matrixA entirely determines theC1 classification ofXA(n). Namely, two such vector field
XA1(n) andXA2(n) areC1 conjugate(orbitally equivalent, resp.) if and only ifA1 andA2 are strictly similar
(similar, resp.).

(ii) for n = 5, the statement(i) holds, too, with the following exceptions: the eigenvalues ofA, up to ennumeration
have the forms

(−α,−α ± β,±α + β,β,β), or (−α,−α,−α + β,β,β), (2)

whereαβ > 0, whileA itself either it is diagonalizable or it has two2-dimensional Jordan blocks.

Here we call two matricesA andB strictly similar (resp.similar) if there is an invertible matrixT and a non-zero
real numberµ such thatA = T BT −1 (resp.,A = µT BT −1).

We remark that the two pairs of signs± in (2) are independent. Thus (2) in fact contains five cases. From
above theorems, we immediately have the following.

Corollary 1.2. For n � 5, if all the eigenvalues ofA are mutually distinct and the2-jet of XA(n) is generic, then
the matrixA entirely determines theC1 classification of the whole vector fieldXA(n).

Example 1.Let A be a 5× 5 matrix with eigenvalues(−α,−α,−α + β,β,β) but with only one 2-dimensiona
Jordan block (a non-exceptional case in (2)). ThenXA(5), although with two possible positions of the Jordan blo
up to ennumeration of coordinates, isC1 conjugate to the moduli-free normal form

ẋ1 = −αx1 + x2, ẋ2 = −αx2, ẋ3 = (−α + β)x3 + x1x4 + x1x5, ẋ4 = βx4, ẋ5 = βx5.

The genericity conditions, in terms of (independent of, though) the final coordinates, ask the non-vanis
the coefficients ofx1x4∂/∂x3 andx1x5∂/∂x3.

To state the general result onRn, denote the eigenvalues ofA by

λ = (µ1, . . . ,µs, ν1, . . . , νu), Reµi < 0, Reνj > 0, s + u = n, (3)

and we have

Theorem 1.3.For vector fieldXA(n), if all the eigenvalues ofA are mutually distinct and satisfy the inequalitie

Re(µi1 − µi2) 
= Re(νj1 − νj2), i1 
= i2, j1 
= j2, (4)

and the2-jet of XA(n) is generic, then the matrixA entirely determines theC1 classification ofXA(n).

Alternatively, we present another set of sufficient conditions which lead to theC1 linearization ofXA(n)

(consequently itsC1 classification, regardless the genericity or degeneracy of the nonlinear part). Recall the
of [1] on theC1 linearization:if the eigenvalues of the matrixA satisfy the inequalitiesReλi 
= Reλk + Reλl ,
whereλi,k,l run over all the eigenvalues of theA, thenXA(n) can beC1 linearized.

Theorem 1.4.If the eigenvalues ofA satisfy the following inequalities

Reµi 
= Reµj1 + Reνj2, and Reνi 
= Reµj1 + Reνj2, (5)

thenXA(n) is C1 linearizable.
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We remark that conditions (4) and (5) are mutually independent. We remark also that the num
inequalities (5) can be essentially less than that of [1] since the right sides of (5) take pairs of eigenvalu
one negative real part and one positive real part.

2. Preliminaries and sketch of the proofs

It is well known, according to Sternberg [7,8] and Chen [5], that to study finitely smooth normal forms oC∞
vector fields at a hyperbolic equilibrium point, it suffices to consider truncated polynomial vector fields
nonlinear part consists of resonant monomials only. In nilpotent cases, based on the linear part of the vec
one can further apply the Belitskii theorem [1] to delete more terms from the polynomial. We collect thes
into the following

Proposition 2.1. In a neighborhood of a hyperbolic equilibrium point, an infinitely smooth vector field ca
reduced, by aCr (r � 0) change of coordinates, to a polynomial resonant normal formẋ = J x + P (x), whereJ

is ann × n matrix in its Jordan form,P is a polynomial satisfyingJ tP (x) − P ′(x)J tx = 0, and the order ofP
depends onr.

We refer the reader to [4] for an extensive exposition on the relation between the order ofP , the numberr, and
the smoothness of the vector fields.

Another important theorem we shall use in the proof of the theorem is the Samovol theorem on the linea
of hyperbolic vector fields.

Proposition 2.2(Samovol [6]).Let X be a smooth hyperbolic vector field whose eigenvalues(µ1, . . . ,µs, ν1, . . . ,

νu) are ordered as

Reµs � · · · � Reµ1 < 0 < Reν1 � · · · � Reνu.

Suppose that the followingS(k) condition holds for some positive integerk: for each resonant relation of the form

µj =
∑

r−
m µm +

∑
r+
h νh, or νj =

∑
r−
m µm +

∑
r+
h νh (6)

there is anm � s or anh � u such that

k Reνh < Re
(
r+
1 ν1 + · · · + r+

h νh

)
, or k Reµm > Re

(
r−
1 µ1 + · · · + r−

m µm

)
.

ThenX is Ck conjugate to its linear partj1X.

In the proof of our results, we in fact use the Samovol theorem in the following way. If a resonant mon
of X satisfies the mentionedS(k) condition, then the monomial can be eliminated by aCk change of coordinates
In other words, instead of linearizing the vector fieldX, following the normalization techniques developed in [
we can show thatX is Ck equivalent tõX which is obtained fromX simply by eliminating the resonant monomia
satisfying S(k) conditions. Thus the elimination of resonant monomials can be done term by term, le
unchanged those resonant monomials which do not meetS(k) condition. For example, the elimination of tw
resonant monomials in the vector field(−x1,−2x2, x3,2x4,3x5 + x1x2x3

4 + x3
1x3

4) can be fulfilled respectively via
the normalizations

xj = yj , j = 1,2,3,4, x5 = y5 − 1

6
y1y2y3

4 ln
(|y1|6 + |y2|3

)

and

yj = zj , j = 1,2,3,4, y5 = z5 − 1
z3

1z3
4 ln

(|z1|4 + |z2|2
)
.

4
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The proof to each theorem consists of two main steps: first, we show that, under the conditions state
theorems, the 2-jet of a given germ of a vector field can be normalized to a moduli-free normal form
precisely, by applying the Poincaré–Dulac–Belitskii theorem we can normalize the 2-jet of the vector fie
scale all the coefficients of the quadratic terms to 1. To show that the final normal form is the simple
independent of an individual coordinate system, it suffices to show that under resonant changes of coo
(see [3]), the normal form is invariant (in certain cases, we can also see this point from geometry, i.e., by c
the number of invariant surfaces of the 2-jet of the vector field). Then, essentially following the Samavol th
we show the following: any vector field, under the theorem conditions, is 2-jet determined with respectC1

classification. In other words, we shall show that any nonlinear terms with order equal to or higher than th
be eliminated by aC1 change of coordinates.

In particular, in lower dimensional cases, namely, the cases listed in Theorem 1.1, the proof to the theo
be done by exhausting all possible algebraic structures of the eigenvalues. Thus some straightforward ca
convinces us that no restriction on the eigenvalues is needed.

In the general case as discussed in Theorem 1.3, under the set of algebraic conditions, we in fact can
above normalization procedures (particularly, the linear scalings), observing the following facts: (i) there is
one resonant monomial of the formxiyj attached to each component differential equationẋh or ẏk , wherexi and
yj represent stable and unstable coordinates, respectively; (ii) each coordinatexi (resp.yj ) can occur at most onc
in xiyj∂/∂x (resp.xiyj ∂/∂y). Namely, if there are two resonant monomialsxi1yj1∂/∂xh1 andxi2yj2∂/∂xh2, then
i1 
= i2 (resp. if there are two resonant monomialsxi1yj1∂/∂yk1 andxi2yj2∂/∂yk2, thenj1 
= j2).
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