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Abstract

In this Note, we study a type of time-symmetric forward–backward stochastic differential equations. Unde
monotonicity assumptions, we establish the existence and uniqueness theorem by means of a method of continu
also give an application.To cite this article: S. Peng, Y. Shi, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Un type d’équations différentielles stochastiques progressives–rétrogrades symétriques par rapport au temps.Nous
étudions dans cette Note un type d’équations différentielles stochastiques progressives–rétrogrades symétriques pa
temps. Sous certaines conditions de monotonie, nous donnons un théorème d’existence et unicité des solutions de
par une méthode de continuation. Ensuite nous présentons une application.Pour citer cet article : S. Peng, Y. Shi, C. R. Acad.
Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous étudions un type d’équations différentielles stochastiques progressives–ré
symétriques par rapport au temps. Précisément, nous considérons les équations suivantes :{

dyt = f (t, yt , Yt , zt ,Zt )dt + g(t, yt , Yt , zt ,Zt )dWt − zt dBt, y0 = x,
dYt = F(t, yt , Yt , zt ,Zt )dt +G(t, yt , Yt , zt ,Zt )dBt +Zt dWt, YT =Φ(yT ), (1)

où {Wt }0�t et {Bt }0�t sont deux mouvements browniens indépendants, et(dWt) est une integrale de It
(standard) progressive, tandis que(dBt ) est une integrale de Itô rétrograde commencée enT , et inverse en temps
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Cela généralise les types d’équations différentielles stochastiques progressive–rétrogrades qui ont été a
étudiés. Par une méthode de continuation, on a le résultat suivant :

Théorème.On suppose les hypothèses (H1)–(H4)satisfaites. Alors, pour chaque x ∈ R
n, l’Éq. (1) a une solution

unique dans M2(0, T ;R
n+n+n×l+n×d ).

1. Introduction

Since a series of research by Antonelli [1] and specially by Ma, Protter and Yong [6], with applic
in finance, forward–backward stochastic differential equations (FBSDE in short) have been deeply inve
(see [4]). One of these directions was initialized by Hu and Peng [5] and developed by Peng and Wu [12], Yo
Peng and Shi [11] and Peng [10], which generalized stochastic Hamiltonian systems introduced by Bism
1973 and then systematically investigated by Bensoussan [2]. In general, a FBSDE consists of a forward
Itô’s type, and a backward SDE of Pardoux–Peng’s type (see [7]). They are coupled with each other. Howe
type of FBSDE is not symmetric with respect to time. In this paper we will study a type of time-symmetric FB
i.e., the forward equation is “forward” with respect to a standard stochastic integral dWt , as well as “backward” with
respect to a backward stochastic integral dBt ; the coupled “backward equation” is “forward” under the backw
stochastic integral dBt and “backward” under the forward one. In other words, both the forward equation an
backward one are types of SDEs introduced by Pardoux and Peng [8] under the name “backward doub
with different directions of stochastic integral. We will also discuss the corresponding time-symmetric sto
Hamiltonian systems.

Let (Ω,F ,P ) be a probability space, and[0, T ] be a fixed arbitrarily large time duration throughout this pa
Let {Wt ; 0 � t � T } and{Bt ; 0 � t � T } be two mutually independent standard Brownian motions define
(Ω,F ,P ), with values respectively inRd and inR

l . Let N denote the class ofP -null elements ofF . For each
t ∈ [0, T ], we defineFt

.= FW
t ∨FB

t,T , whereFW
t = N ∨ σ {Wr −W0; 0 � r � t}, FB

t,T = N ∨ σ {Br − Bt ; t �
r � T }. Note that the collection{Ft , t ∈ [0, T ]} is neither increasing nor decreasing, and it does not cons
a filtration. LetM2(0, T ;R

n) denote the space of all (classes of dP × dt a.e. equal)Rn-valuedFt -measurable
stochastic processes{vt ; t ∈ [0, T ]} which satisfyE

∫ T
0 |vt |2 dt <∞. ObviouslyM2(0, T ;R

n) is a Hilbert space
For a givenu ∈M2(0, T ;R

d) andv ∈M2(0, T ;R
l), one can define the (standard) forward Itô’s integral

∫ ·
0 us dWs

and the backward Itô’s integral
∫ T
· vs dBs . They are both inM2(0, T ;R). (See [8] for details.)

Under this framework, we consider the following type of time-symmetric forward–backward stoc
differential equations (SFBSDE in short)

yt = x +
t∫

0

f (s, ys, Ys, zs,Zs)ds +
t∫

0

g(s, ys, Ys, zs,Zs)dWs −
t∫

0

zs dBs,

Yt =Φ(yT )+
T∫
t

F (s, ys, Ys, zs ,Zs)ds +
T∫
t

G(s, ys, Ys, zs,Zs)dBs +
T∫
t

Zs dWs.

(1)

In the case when (1) does not involve the term of backward Itô’s integral, that is, whenG ≡ 0 andf, g, F are
independent ofz, this system will degenerate to the FBSDE which has been studied by Hu and Peng [5]
on. On the other hand, a new kind of backward stochastic differential equations, called backward doubly st
differential equations, has been introduced by Pardoux and Peng [8]. The aim of this Note is to combine th
two types of results, to study the existence and uniqueness of a solution to (1). Under some monotonicity co
(see (H1) and (H2)), we will apply the method of continuation to solve (1). This method was introduced b
in [9] for solving backward stochastic differential equations (BSDE in short) with random terminal time an
in [5] and [12] and [13] for solving FBSDE.



S. Peng, Y. Shi / C. R. Acad. Sci. Paris, Ser. I 336 (2003) 773–778 775

chastic
to the

means of
ing that
the one
ssue

e some
4; finally

ng

ct
are
It is an interesting open problem to learn how to connect this type of SFBSDE to some nonlinear sto
partial differential equations in order to generalize the well-known nonlinear Feynman–Kac formula
stochastic case. In the interest of studying stochastic viscosity solutions for nonlinear stochastic PDEs by
this type of SFBSDE, it is indispensable to some types of comparison theorems of SFBSDE. It is worth not
the comparison theorem of SFBSDE is interesting in its own right, as it seems not to naturally derive from
of FBSDE; as a result the collection{Ft }t∈[0,T ] is not a natural filtration. We hope to be able to address this i
in our future publications.

This Note is organized as follows: in the next section we present our main results; in Section 3 we provid
a priori estimates; the estimates will be applied to prove the existence and uniqueness theorem in Section
in Section 5 we will apply the above result to a doubly stochastic Hamiltonian system.

For the simplicity of notations, we only consider the case wherey andY take the same dimension. But usi
the techniques introduced by Peng and Wu [12], we can also treat some more general cases.

2. Setting of the problem and the main results

Consider the following type of time-symmetric forward–backward stochastic differential equations{
dyt = f (t, yt , Yt , zt ,Zt )dt + g(t, yt , Yt , zt ,Zt )dWt − zt dBt, y0 = x,
dYt = F(t, yt , Yt , zt ,Zt )dt +G(t, yt , Yt , zt ,Zt )dBt +Zt dWt, YT =Φ(yT ), (2)

wherex ∈ R
n,

F :Ω × [0, T ] × R
n × R

n × R
n×l × R

n×d → R
n,

f :Ω × [0, T ] × R
n × R

n × R
n×l × R

n×d → R
n,

G :Ω × [0, T ] × R
n × R

n × R
n×l × R

n×d → R
n×l ,

g :Ω × [0, T ] × R
n × R

n × R
n×l × R

n×d → R
n×d ,

Φ :Ω × R
n → R

n.

Let us introduce some notationsζ = (y,Y, z,Z), A(t, ζ )= (F,f,G,g)(t, ζ ). We use the usual inner produ
〈·, ·〉 and Euclidean norm| · | in R

n, R
n×l andR

n×d . All the equalities and inequalities mentioned in this paper
in the sense of dt × dP almost surely on[0, T ] ×Ω.

Definition 2.1. A quadruple ofFt -measurable stochastic processes(y,Y, z,Z) ∈ M2
(
0, T ;R

n+n+n×l+n×d ) is
called a solution of SFBSDE(2), if (2) is satisfied.

The following monotonicity conditions are our main assumptions:

(H1) There exists a constantµ> 0, such that〈
A(t, ζ )−A(t, ζ̄ ), ζ − ζ̄ 〉 � −µ|ζ − ζ̄ |2,

∀ζ = (y,Y, z,Z), ζ̄ = (
ȳ,�Y , z̄,�Z ) ∈ R

n × R
n × R

n×l × R
n×d , ∀t ∈ [0, T ].

(H2) 〈Φ(y)−Φ(ȳ), y − ȳ〉 � 0, ∀y, ȳ ∈ R
n.

We also assume that

(H3) For eachζ ∈ R
n+n+n×l+n×d , A(·, ζ ) is a Ft -measurable vector process defined on[0, T ] with A(·,0) ∈

M2(0, T ;R
n+n+n×l+n×d ), and for eachy ∈ R

n, Φ(y) is a FT -measurable random vector withΦ(0) ∈
L2(Ω,FT ,P ;R

n).
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(H4) A(t, ζ ) andΦ(y) satisfy Lipschitz condition: there exists a constantk > 0, such that∣∣A(t, ζ )−A(t, ζ̄ )∣∣ � k|ζ − ζ̄ |, ∀ζ, ζ̄ ∈ R
n+n+n×l+n×d , ∀t ∈ [0, T ],∣∣Φ(y)−Φ(ȳ)∣∣ � k|y − ȳ|, ∀y, ȳ ∈ R

n.

Our main result is as follows.

Theorem 2.2. Under assumptions (H1)–(H4), for each x ∈ R
n, (2) has a unique solution in M2(0, T ;

R
n+n+n×l+n×d ).

3. A priori estimates

In order to prove the existence and uniqueness result for (2), we need the following lemmas. They in
priori estimates of solutions of the following family of SFBSDEs parametrized byα ∈ [0,1].{

dyt =
[
f α(t,Ut )+ f0(t)

]
dt − zt dBt +

[
gα(t,Ut )+ g0(t)

]
dWt, y0 = x,

dYt =
[
Fα(t,Ut )+ F0(t)

]
dt +Zt dWt +

[
Gα(t,Ut )+G0(t)

]
dBt, YT =Φα(yT )+ ϕ,

(3)

whereU = (y,Y, z,Z) and for any givenα ∈ [0,1],
f α(t, y,Y, z,Z)= αf (t, y,Y, z,Z)− (1− α)Y, gα(t, y,Y, z,Z)= αg(t, y,Y, z,Z)− (1− α)Z,
Fα(t, y,Y, z,Z)= αF(t, y,Y, z,Z)− (1− α)y, Gα(t, y,Y, z,Z)= αG(t, y,Y, z,Z)− (1− α)z,
Φα(y)= αΦ(y)+ (1− α)y.

Observe that whenα = 0, (3) is written in the following simple form{
dyt =

(−Yt + f0(t)
)
dt + (−Zt + g0(t)

)
dWt − zt dBt , y0 = x,

dYt =
(−yt + F0(t)

)
dt + (−zt +G0(t)

)
dBt +Zt dWt, YT = yT + ϕ. (4)

We have the following lemma:

Lemma 3.1. For any x ∈ R
n, (F0, f0,G0, g0) ∈ M2(0, T ;R

n+n+n×l+n×d ), ϕ ∈ L2(Ω,FT ,P ;R
n), (4) has a

unique solution (y,Y, z,Z) in M2(0, T ;R
n+n+n×l+n×d ).

Proof. The proof of uniqueness is similar to the one of Theorem 2.2 below. We only need to find a solution
We consider the following linear backward doubly stochastic differential equations

�Yt = ϕ −
T∫
t

[�Ys + F0(s)− f0(s)
]
ds −

T∫
t

[
2�Zs − g0(s)

]
dWs −

T∫
t

G0(s)dBs. (5)

By the result of [8], the above equation has a unique solution(�Y ,�Z). Then we can solve the following SDE

yt = x +
t∫

0

[−ys − �Ys + f0(s)
]
ds +

t∫
0

[−�Zs + g0(s)
]
dWs −

t∫
0

z̄s dBs. (6)

Due to the result in [8], the above equation has a unique solution(y, z̄). And settingY = y+ �Y , Z = �Z, z= z̄, we
easily see that(y,Y, z,Z) is a solution to (4). Thus the existence is proved.✷

The following a priori lemma is a key step in the proof of the method of continuation. It shows that, if
fixedα = α0 ∈ [0,1], (3) can be solved, then it can also be solved forα ∈ [α0, α0 + δ0], for some positive constan
δ0 independent ofα0.
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Lemma 3.2.Under assumptions (H1)–(H4), there exists a positive constant δ0 such that if, a priori, for some
α0 ∈ [0,1), and for each x ∈ R

n, ϕ ∈ L2(Ω,FT ,P ;R
n), (F0, f0,G0, g0) ∈M2(0, T ;R

n+n+n×l+n×d ), (3) has
a unique solution, then for each α ∈ [α0, α0 + δ0], and x ∈ R

n, ϕ ∈ L2(Ω,FT ,P ;R
n), (F0, f0,G0, g0) ∈

M2(0, T ;R
n+n+n×l+n×d ), (3) also has a unique solution in M2(0, T ;R

n+n+n×l+n×d ).

Proof. Since for anyx ∈ R
n, (F0, f0,G0, g0) ∈M2(0, T ;R

n+n+n×l+n×d ), ϕ ∈L2(Ω,FT ,P ;R
n), there exists a

unique solution to(3) for α = α0, thus for each�U = (ȳ,�Y , z̄,�Z) ∈M2(0, T ;R
n+n+n×l+n×d ), there exists a uniqu

quadrupleU = (y,Y, z,Z) ∈M2(0, T ;R
n+n+n×l+n×d ) satisfying the following equations

dyt =
[
f α0(t,Ut )+ δ

(
f (t, �Ut)+ �Yt

) + f0(t)
]
dt − zt dBt +

[
gα0(t,Ut )+ δ

(
g(t, �Ut)+ �Zt

) + g0(t)
]
dWt,

dYt =
[
Fα0(t,Ut )+ δ

(
F(t, �Ut)+ ȳt

) + F0(t)
]
dt +Zt dWt +

[
Gα0(t,Ut )+ δ

(
G(t, �Ut)+ z̄t

) +G0(t)
]
dBt,

y0 = x, YT =Φα0(yT )+ δ
(
Φ(ȳT )− ȳT

) + ϕ,
whereδ is a positive number independent ofα0 and less than 1. We will prove that the mapping defined
U = Iα0+δ(�U) :M2(0, T ;R

n+n+n×l+n×d )→M2(0, T ;R
n+n+n×l+n×d ) is contractive for a small enoughδ. Let

�U ′ = (ȳ ′,�Y ′, z̄′,�Z′) ∈M2(0, T ;R
n+n+n×l+n×d ) andU ′ = (y ′, Y ′, z′,Z′)= Iα0+δ(�U ′), and

�̂U = �U − �U ′ = ( ˆ̄y, �̂Y , ˆ̄z, �̂Z ) = (
ȳ − ȳ ′,�Y − �Y ′, z̄− z̄′,�Z− �Z′ ),

Û =U −U ′ = (ŷ, Ŷ , ẑ, Ẑ)= (
y − y ′, Y − Y ′, z− z′,Z−Z′).

Applying Itô’s formula to〈ŷ, Ŷ 〉 on [0, T ] and by virtue of (H1) and (H4), we have, sinceEŷ0 = 0

E
〈
ŷT , α0

(
Φ(yT )−Φ(y ′

T )
) + (1− α0)ŷT + δ(Φ(ȳT )−Φ(ȳ ′

T )− ˆ̄yT
)〉

� E

T∫
0

[
(α0 −µα0 − 1)

∣∣Ût ∣∣2 + δ(k + 1)

2

∣∣Ût ∣∣2 + δ(k + 1)

2

∣∣�̂Ut ∣∣2]dt .

Then by virtue of (H2) and (H4), we can derive that[θ − δ(k+1)
2 ]E ∫ T

0 |Ût |2 dt � δ(k+1)
2 E

∫ T
0 | �̂Ut |2 dt + δ(k + 1)

E|ŷT || ˆ̄yT |, where θ = min(1,µ). Applying Itô’s formula to |ŷ|2 on [0, T ] and by virtue of (H4), by a
standard method of estimation, we can derive that there exists a constantc � 1 which depends only onk,

such thatE|ŷT |2 � cE
∫ T

0 |Ût |2 dt + δcE
∫ T

0 | �̂Ut |2 dt . We now chooseδ0 = 2θ
(4c+1)(c+1)(k+1) . Then for any

δ ∈ [0, δ0],E
∫ T

0 |Ût |2 dt � 1
4c (E

∫ T
0 | �̂Ut |2 dt + E| ˆ̄yT |2). Sinceδ0 � 1

4c , we have for anyδ ∈ [0, δ0], E|ŷT |2 �
1
2(E

∫ T
0 | �̂Ut |2 dt + E| ˆ̄yT |2). It follows that, for each fixedδ ∈ [0, δ0], the mappingIα0+δ is contractive in the

following senseE
∫ T

0 |Ût |2 dt + E|ŷT |2 � 3
4(E

∫ T
0 | �̂Ut |2 dt + E| ˆ̄yT |2). Thus this mapping has a unique fixed po

U = (y,Y, z,Z) in M2(0, T ;R
n+n+n×l+n×d ), which is the solution of (3) forα = α0 + δ, asδ ∈ [0, δ0]. The proof

is complete. ✷
4. The proof of Theorem 2.2

Now we can give the proof of Theorem 2.2 – the existence and uniqueness theorem of (2).

Proof. Uniqueness. Let U = (y,Y, z,Z) and U ′ = (y ′, Y ′, z′,Z′) be two solutions of (2). We use the sam
notations as in Lemma 3.2. Applying Itô’s formula to〈ŷ, Ŷ 〉 on [0, T ], we haveE〈ŷT , Φ̂(yT )〉 = E

∫ T
0 〈A(t,Ut )−

A(t,U ′
t ), Ût 〉dt . By virtue of (H1) and (H2), it follows thatµE

∫ T
0 |Ut −U ′

t |2 dt � 0. ThusU =U ′. The uniquenes
is proved.

Existence. By Lemma 3.1, for anyx ∈ R
n, (F0, f0,G0, g0) ∈M2(0, T ;R

n+n+n×l+n×d ), ϕ ∈ L2(Ω,FT ,P ;
R
n), (3) has a unique solution inM2(0, T ;R

n+n+n×l+n×d ) asα = 0.
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It follows from Lemma 3.2 that there exists a positive constantδ0 = δ0(k,µ) such that for anyδ ∈ [0, δ0] and
x ∈ R

n, ϕ ∈L2(Ω,FT ,P ;R
n), (F0, f0,G0, g0) ∈M2(0, T ;R

n+n+n×l+n×d ), (3) has a unique solution forα = δ.
Sinceδ0 depends only onk andµ, we can repeat this process forN times with 1� Nδ0 < 1 + δ0. In particular,
for α = 1 with (F0, f0,G0, g0)≡ 0 andϕ ≡ 0, (3) has a unique solution inM2(0, T ;R

n+n+n×l+n×d ). The proof
is complete. ✷
Remark 1. In the case where the initial conditiony0 = x ∈L2(Ω,F0,P ;R

n), all the results in this paper still hol
true.

5. Example: a doubly stochastic Hamiltonian system

Consider the following doubly stochastic Hamiltonian system{
dyt =HY dt +HZ dWt − zt dBt, y0 = x,
dYt = −Hy dt −Hz dBt +Zt dWt, YT =Φy(yT ), (7)

whereH(y,Y, z,Z) :R4 → R, Φ(y) :R→ R; HY .= ∇YH, Φy .= ∇yΦ. The Brownian motions{Wt ; 0� t � T }
and{Bt ; 0 � t � T } are both assumed to be 1-dimensional. Assume that both the derivatives of 2-order ofH and
the derivatives of 1-order ofΦ are bounded,H is concave on(Y,Z) and convex on(y, z) in the following sense
(µ > 0):

−Hyy −HyY −Hyz −HyZ
HYy HYY HYz HYZ
−Hzy −HzY −Hzz −HzZ
HZy HZY HZz HZZ

 � −µI , ∀(y,Y, z,Z) ∈ R
4,

andΦ is convex on(y): Φyy � 0, ∀y ∈ R. By Theorem 2.2, we know that this doubly stochastic Hamilton
system (7) has a unique solution(y,Y, z,Z) in M2(0, T ;R

4).
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