Topology

Thin presentation of knots in lens spaces and $\mathbb{R} P^{3}$-conjecture

Arnaud Deruelle
Université de Provence, CMI, 39, rue Joliot Curie, 13453 Marseille cedex 13, France
Received 23 January 2003; accepted after revision 17 April 2003
Presented by Étienne Ghys

Abstract

This Note concerns knots in a lens space L that produce S^{3} by Dehn surgery. We introduce the thin presentation of knots in L, with respect to a standard spine. We prove that among such knots, those having a thin presentation with only maxima, are 0-bridge or 1-bridge braids in L. In the case $L=\mathbb{R} P^{3}$, we deduce that minimally braided knots in $\mathbb{R} P^{3}$ cannot yield S^{3} by Dehn surgery. To cite this article: A. Deruelle, C. R. Acad. Sci. Paris, Ser. I 336 (2003). © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Présentation mince des nœuds dans les espaces lenticulaires. Cette Note concerne les nœuds d'un espace lenticulaire L qui produisent S^{3} par chirurgies de Dehn. Nous introduisons ici une présentation mince des nœuds de L, par rapport à une épine standard. Nous prouvons alors que parmi ces nœuds, ceux qui possèdent une présentation mince n'ayant que des maxima sont des 0 ou 1-tresses. Dans le cas où $L=\mathbb{R} P^{3}$, nous déduisons que les nœuds minimalement tressés de $\mathbb{R} P^{3}$ ne peuvent produire S^{3} par chirurgie de Dehn. Pour citer cet article : A. Deruelle, C. R. Acad. Sci. Paris, Ser. I 336 (2003). © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

This work is about Dehn surgeries on knots in S^{3}, and what kind of 3-manifolds can arise from such surgeries. In particular, we are interested in the Dehn surgeries that yield lens spaces. We study knots in lens spaces yielding S^{3}, trying to characterize such knots by introducing their thin presentation.

Let $X=L-\operatorname{Int} N(K)$ be the exterior of the knot K in a lens space L. If α is a slope on the boundary of X and V_{α} is a solid torus, then the closed 3-manifold obtained by α-Dehn surgery on the knot K is defined to be $X(\alpha)=X \cup V_{\alpha}$, where α bounds a meridional disk in V_{α}. The core of V_{α} becomes a knot K_{α} in $X(\alpha)$, called the core of the surgery. Note that the exterior of the knot K_{α} in $X(\alpha), X(\alpha)-\operatorname{Int} N\left(K_{\alpha}\right)$, is also homeomorphic to X.

For V a Heegaard solid torus of L, a 1-bridge braid in L is a union of a non-essential arc in V and a simple arc on ∂V [7]. A 0 -bridge braid is a torus knot on ∂V.

[^0]We know that a non-trivial knot in S^{3} cannot produce $S^{1} \times S^{2}$ nor S^{3} by Dehn surgery [6,11]. In the following, L is assumed to be a lens space (neither S^{3} nor $S^{1} \times S^{2}$). Let K be a knot in L that produces S^{3} by α-Dehn surgery and let K_{α} be the core of the surgery in S^{3}. Then, following Berge [1] and Gordon [9], we conjecture that K is a 0 -bridge or a 1-bridge braid in L. The main result of this Note is given in the following theorem.

Theorem 1.1. Let K be a knot in L yielding S^{3} by Dehn surgery. If there exists a standard spine Σ such that a thin presentation of K with respect to Σ has only maxima, then K is a 0 -bridge or 1 -bridge braid in L. Furthermore, L cannot be $\mathbb{R} P^{3}$.

Gordon has conjectured that Dehn surgery on a non-trivial knot in S^{3} cannot yield a lens space of order less than six [9]. The first lens space in terms of order is $L(2,1)=\mathbb{R} P^{3}$. So, as a consequence of the Gordon Conjecture, we have the $\mathbb{R} P^{3}$-conjecture that states [12]: $\mathbb{R} P^{3}$ cannot be obtained by Dehn surgery on a non-trivial knot in S^{3}. Let a minimally braided knot be a knot in $\mathbb{R} P^{3}$ having a thin presentation with only maxima. Then Theorem 1.1 implies the following corollary.

Corollary 1.2. A minimally braided knot in $\mathbb{R} P^{3}$ cannot yield S^{3} by Dehn surgery.

For the details of the proofs of the above results, we refer to [3,4] for the case $L=\mathbb{R} P^{3}$ in Theorem 1.1 and Corollary 1.2. And in the case where $L \neq \mathbb{R} P^{3}$ in Theorem 1.1, we refer to [5].

Let us now describe in a few words the sections of this Note and give a sketch of the proof of Theorem 1.1.
We consider a thin presentation of K_{α}, as defined by Gabai [6]. In a similar way, we define here a thin presentation of knots in a lens space and an associated tight presentation, after fixing a spine Σ in L. This is the goal of Section 2. Let us consider K in such a thin presentation in L. Then S^{3} and L each admits a foliation by spheres corresponding to the thin presentations of K_{α} and K, respectively. In the following, we denote by \widehat{S}_{α} and \widehat{S}_{β}, the level 2-spheres in the S^{3} and L-foliations, respectively. Let $S_{\alpha}=\widehat{S}_{\alpha} \cap X$ and $S_{\beta}=\widehat{S}_{\beta} \cap X$ denote the corresponding level surfaces in X.

Let S_{α} and S_{β} be such planar surfaces in X. Then we may assume that S_{α} and S_{β} are transverse and in general position. So, we define a pair of intersection planar graphs $\left(G_{\alpha}, G_{\beta}\right)$ in the usual way [10]. A trivial loop in a planar graph is the boundary of a 1 -sided disk-face. By [11,13], G_{β} cannot represent all types. So, if G_{α} and G_{β} contain no trivial loop, by [11, Proposition 2.0.1], G_{α} must contain a Scharlemann cycle [15].

Let us remark that if G_{α} (resp. G_{β}) contains a trivial loop, then we say that S_{β} (resp. S_{α}) is High or Low with respect to S_{α} (resp. S_{β}) or for short is \mathcal{H} or \mathcal{L}, according to the side where the disk-face is, in S_{β} (resp. S_{α}), with respect to S_{α} (resp. S_{β}) [6,11]. Furthermore, we define here another characteristic: if G_{α} contains a Scharlemann cycle then we say that S_{β} is a Carrier with respect to S_{α}, or just \mathcal{C} for short [3-5]. If S_{α} (resp. S_{β}) is none of these, we say it is \mathcal{N}.

In Section 3, we assume that K has only maxima in its thin (and so its tight) presentation in L. We then produce two one-parameter families of level surfaces, coming from the S^{3}-foliation and the L-foliation, respectively.

We introduce in Section 4 the graph of singularities associated to the intersection of these two families of level surfaces; for Cerf Theory, we refer to [2]. We then find two planar surfaces S_{α} in S^{3} and S_{β} in L, and prove that $|K \cap \Sigma|=1$. Studying the configuration of K we deduce that it is a 0 -bridge or a 1 -bridge braid (see [3] for the details). In the case $L=\mathbb{R} P^{3}, K$ is then trivial or bounds a \mathcal{M} öbius strip, so we have a contradiction [8].

2. Thin presentations

For K_{α} in S^{3}, the thin presentation is due to Gabai [6]. For K in $L=L(p, q)$, we remark that L is a closed 3-ball B with an equivalence relation \sim on its boundary which is a $\frac{2 \pi q}{p}$-rotation on ∂B. So, $L=B / \sim$ and $\partial B / \sim=\Sigma$ is defined to be a standard spine of L [14]. The identified equator of B becomes the singular 1-complex of Σ; this
complex \mathcal{C} is the axis of the standard spine Σ. Note that if $L=\mathbb{R} P^{3}$ then $\Sigma=\mathbb{R} P^{2}$ is a projective plane and \mathcal{C} is not singular.

Now let ∞ be an interior point of B. Then $L-(\Sigma \cup\{\infty\}) \cong S^{2} \times \mathbb{R}_{+}^{*}$ defines a foliation by 2 -spheres. So, we put the knot K in transverse position with respect to this L-foliation. As in S^{3}, we define the complexity of K to be the sum of the geometric intersections of K with the generic level 2-spheres of the foliation. A thin presentation of K is realized for a minimal complexity.

Let us remark that if $L \neq \mathbb{R} P^{3}$, then K does not intersect the axis of Σ, because of the openness of the property for a knot to be in transverse position with respect to a foliation (for the Morse property see [2,11]). But, for a given thin presentation of K, one can define what we call a tight presentation, minimizing $|K \cap \Sigma|$ by allowing intersection with \mathcal{C}; this corresponds to first maxima cancelling, so tightening the knot, with possible intersections between K and \mathcal{C}.

3. One-parameter families of spheres

From now on, we suppose that K is in a thin presentation (in L) with only maxima; this is the corresponding tight presentation. Let K_{α} be also in a thin presentation (in S^{3}).

Let $\left\{\widehat{S}_{\mu}\right\}_{\mu \in[0,1]}$ denote a family of level 2 -spheres in the tight presentation of K, between Σ and the first maximum. Let $\left\{\widehat{S}_{\lambda}\right\}_{\lambda \in[0,1]}$ denote a family of spheres in the thin presentation of K_{α} between a consecutive minimum and maximum. Such a family is called a middle slab [11]. For convenience, we fix the index notations $\lambda \in[0,1]$ for S^{3} and $\mu \in[0,1]$ for L.

Lemma 3.1. (i) A surface S_{λ} or S_{μ} is one and only one of \mathcal{H}, \mathcal{L} or \mathcal{C}. (ii) $\forall \lambda \in[0,1] \exists \mu \in[0,1]$ such that S_{μ} is \mathcal{N} with respect to S_{λ}.

We deduce the previous result by studying the thin presentation of K_{α} and that of K. If one supposes the contrary, then we can minimize the complexity. For details in the case $L=\mathbb{R} P^{3}$, we refer to [4, Lemmas 2.2 and 2.3] and for the general case see [5, Lemmas 4.4 and 4.7].

4. The graph of singularities

We now study, using Cerf Theory, the intersection of the two corresponding families of punctured spheres, $\left\{S_{\lambda}\right\}_{\lambda \in[0,1]}$ and $\left\{S_{\mu}\right\}_{\mu \in[0,1]}$ embedded in $X=L-\operatorname{Int} N(K)$. Without loss of generality, we suppose that $S_{\lambda=0}$ is \mathcal{H}, $S_{\lambda=1}$ is $\mathcal{L}, S_{\mu=0}$ is \mathcal{C} and $S_{\mu=1}$ is \mathcal{L}. This is what we call the extremal conditions. About transversality arguments, due to Cerf, we refer to [2, Chapter 2].

We then obtain a "Cerf graph of singularities" Γ. A point in Γ is a couple of parameters $(\lambda, \mu) \in[0,1]^{2}$ for which the corresponding surfaces S_{λ} and S_{μ} are tangent.

A point in $\Gamma^{c}=[0,1]^{2}-\Gamma$, the exterior of the graph, corresponds to transverse surfaces. Note that for all (λ, μ) in the same connected component of Γ^{c}, all the S_{λ} 's have the same characteristic $\mathcal{H}, \mathcal{L}, \mathcal{C}$ or \mathcal{N} with respect to S_{μ}; and similarly for the S_{μ} 's with respect to S_{λ}. The characteristics $\mathcal{H}, \mathcal{L}, \mathcal{C}$ and \mathcal{N} are locally constant in Γ^{c}. So, we associate to each component of Γ^{c}, two characteristics from the set $\{\mathcal{H}, \mathcal{L}, \mathcal{C}, \mathcal{N}\}$: one with respect to λ and the other with respect to μ. From Lemma 3(i), we then have the following result [5, Lemma 4.6].

Lemma 4.1. For a fixed λ, the connected components of Γ^{c} on the same vertical line all have the same characteristic \mathcal{H}, \mathcal{L} or \mathcal{C}, except that some can be \mathcal{N}.

For a fixed μ, the connected components of Γ^{c} on the same horizontal line all have the same characteristic \mathcal{H}, \mathcal{L} or \mathcal{C}, except that some can be \mathcal{N}.

By Gordon and Luecke [11], we may suppose that there does not exist a pair (λ, μ) in Γ^{c} such that S_{μ} is \mathcal{N} with respect to S_{λ} and S_{λ} is \mathcal{N} with respect to S_{μ}. Therefore, in a single connected component of Γ^{c}, we cannot have both characteristics of S_{λ} and S_{μ} being \mathcal{N}.

Let $t=\sup \left\{\mu \in[0,1] \mid S_{\mu}\right.$ is $\left.\mathcal{C}\right\}$. By the extremal conditions, we have $\left.t \in\right] 0,1[$. An index-1 point in Γ is a critical point of Γ that corresponds locally to the crossing of two straight lines. Lemmas 3(ii) and 4 then imply that the corresponding point (s, t) in Γ is an index-1 point of the graph Γ. This means that $S_{\lambda=s}$ and $S_{\mu=t}$ are tangent in two different points. And furthermore, each of $S_{\lambda=s-\varepsilon} \cap S_{\mu=t+\varepsilon}, S_{\lambda=s+\varepsilon} \cap S_{\mu=t+\varepsilon}, S_{\lambda=s+\varepsilon} \cap S_{\mu=t-\varepsilon}$ or $S_{\lambda=s-\varepsilon} \cap S_{\mu=t-\varepsilon}$, is a single tangency point, for small enough $\varepsilon>0$.

Finally, we study the configuration of the planar surfaces in a neighbourhood of (s, t). We then deduce that K intersects at most two times the spheres \widehat{S}_{μ} in the L-foliation and so exactly once the spine Σ. This proves that $|K \cap \Sigma|=1$.

References

[1] J. Berge, Some knots with surgeries yielding lens spaces, Preprint.
[2] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois, in: Lecture Notes in Math., Vol. 53, Springer-Verlag, 1987.
[3] A. Deruelle, Présentation mince des nœuds dans $\mathbb{R} P^{3}$ et application, Thèse, Univ. de Provence, LATP-URA 225, 2001.
[4] A. Deruelle, Présentation mince des nœuds dans $\mathbb{R} P^{3}$ et conjecture de $\mathbb{R} P^{3}$, Preprint, 2002.
[5] A. Deruelle, D. Matignon, Thin presentation of knots and lens spaces, Preprint, 2002.
[6] D. Gabai, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479-536.
[7] D. Gabai, Surgery on knots in solid tori, Topology 28 (1989) 1-6.
[8] C.McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (2) (1983) 687-708.
[9] C.McA. Gordon, Dehn surgery on knots, in: Proc. ICM Kyoto, 1990, pp. 631-642.
[10] C.McA. Gordon, Combinatorial methods in Dehn surgery, in: Lectures at Knots '96, 1997, pp. 263-290.
[11] C.McA. Gordon, J. Luecke, Knots are determined by their complement, J. Amer. Math. Soc. 2 (1989) 371-415.
[12] D. Matignon, Combinatorics and four bridged knots, J. Knot Theory and its Ram. 10 (2001) 493-527.
[13] W. Parry, All types implies torsion, Proc. Amer. Math. Soc. 110 (1990) 871-875.
[14] D. Rolfsen, Knots and Links, in: Math. Lecture Series, Vol. 7, 1976.
[15] M. Scharlemann, Unknotting number-one knots are prime, Invent. Math. 82 (1985) 37-55.

[^0]: E-mail address: deruelle@cmi.univ-mrs.fr (A. Deruelle).
 1631-073X/03/\$ - see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
 doi:10.1016/S1631-073X(03)00218-8

