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Abstract

This Note concerns knots in a lens spdcéhat produces3 by Dehn surgery. We introduce the thin presentation of knots
in L, with respect to a standard spine. We prove that among such knots, those having a thin presentation with only maxima,
are 0-bridge or 1-bridge braids in In the casd. = R P3, we deduce that minimally braided knotsRP3 cannot yieIdS3 by
Dehn surgeryTo citethisarticle: A. Deruelle, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé
Présentation mince des noauds dans les espaces lenticulaires. Cette Note concerne les nceuds d'un espace lenticulaire
qui produisents3 par chirurgies de Dehn. Nous introduisons ici une présentation mince des nodugsdeapport & une épine
standard. Nous prouvons alors que parmi ces noeuds, ceux qui possedent une présentation mince n'ayant que des maxima s
des 0 ou 1-tresses. Dans le caslog R P3, nous déduisons que les nceuds minimalement tresf@gd|e peuvent produire
53 par chirurgie de Dehrour citer cet article: A. Deruelle, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

This work is about Dehn surgeries on knots$i and what kind of 3-manifolds can arise from such surgeries. In
particular, we are interested in the Dehn surgeries that yield lens spaces. We study knots in lens space$yielding
trying to characterize such knots by introducing their thin presentation.

Let X = L — IntN(K) be the exterior of the knak in a lens spacé.. If « is a slope on the boundary &f
andV, is a solid torus, then the closed 3-manifold obtainedxbpehn surgeryon the knotk is defined to be
X (a) = X UV,, wherea bounds a meridional disk ii,. The core ofV, becomes a knak,, in X («), called the
core of the surgeryNote that the exterior of the kn&f, in X (@), X (@) — INt N(K), is also homeomorphic t&.

ForV a Heegaard solid torus @f, a 1-bridge braid irL. is a union of a non-essential arc¥and a simple arc
onaV [7]. A O-bridge braid is a torus knot oV .
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We know that a non-trivial knot is® cannot producé® x 52 nor 53 by Dehn surgery [6,11]. In the following,
L is assumed to be a lens space (neitffenor 1 x §2). Let K be a knotinL that produces® by «-Dehn surgery
and letK, be the core of the surgery i§?. Then, following Berge [1] and Gordon [9], we conjecture tKais a
0-bridge or a 1-bridge braid ih. The main result of this Note is given in the following theorem.

Theorem 1.1. Let K be a knotinL yielding $2 by Dehn surgery. If there exists a standard spisuch that a thin
presentation oK with respect toX' has only maxima, theK is a O-bridge or 1-bridge braid inL. Furthermore,
L cannot beR P3.

Gordon has conjectured tHaehn surgery on a non-trivial knot i§® cannot yield a lens space of order less than
six [9]. The first lens space in terms of orderlig2, 1) = RP3. So, as a consequence of the Gordon Conjecture,
we have th& P3-conjecture that states [12§P3 cannot be obtained by Dehn surgery on a non-trivial knaf3n
Let aminimally braided knobe a knot inR P2 having a thin presentation with only maxima. Then Theorem 1.1
implies the following corollary.

Corollary 1.2. A minimally braided knot ifR P2 cannot yields® by Dehn surgery.

For the details of the proofs of the above results, we refer to [3,4] for thelcas® P2 in Theorem 1.1 and
Corollary 1.2. And in the case whefe# R P2 in Theorem 1.1, we refer to [5].

Let us now describe in a few words the sections of this Note and give a sketch of the proof of Theorem 1.1.

We consider ahin presentationof K,, as defined by Gabai [6]. In a similar way, we define heréia
presentationof knots in a lens space and an associdight presentationafter fixing a spineX in L. This is
the goal of Section 2. Let us consid&rin such a thin presentation ib. Then$® and L each admits a foliation
by spheres corresponding to the thin presentations,odnd K, respectively. In the following, we denote by
andSp, the level 2-spheres in th& and L-foliations, respectively. Le§, = S, N X andSs = Sg N X denote the
corresponding level surfaces i

Let S, andSg be such planar surfaces k1 Then we may assume th§if andSg are transverse and in general
position. So, we define a pair of intersection planar grajghs Gg) in the usual way [10]. Arivial loop in a
planar graph is the boundary of a 1-sided disk-face. By [11g]cannot represent all types. SoGf, andGg
contain no trivial loop, by [11, Proposition 2.0.1}, must contain &charlemann cyclg5].

Let us remark that iz, (resp.Gg) contains a trivial loop, then we say thgg (resp.S,) is High or Low with
respect taS, (resp.Sg) or for shortisH or £, according to the side where the disk-face is§in(resp.Sy), with
respect taS, (resp.Sg) [6,11]. Furthermore, we define here another characterist@, itontains a Scharlemann
cycle then we say théflg is aCarrier with respect taS,, or justC for short [3-5]. If S, (resp.Sg) is none of these,
we say itisV.

In Section 3, we assume th&thas only maxima in its thin (and so its tight) presentation izWe then produce
two one-parameter families of level surfaces, coming fromsthéoliation and theL-foliation, respectively.

We introduce in Section 4 the graph of singularities associated to the intersection of these two families of level
surfaces; for Cerf Theory, we refer to [2]. We then find two planar surfégés S andSg in L, and prove that
|[K N X| =1. Studying the configuration & we deduce that it is a 0-bridge or a 1-bridge braid (see [3] for the
details). In the casé = RP3, K is then trivial or bounds a16bius strip, so we have a contradiction [8].

2. Thin presentations
For K, in $3, the thin presentation is due to Gabai [6]. Bbin L = L(p, q), we remark thaL is a closed 3-ball

B with an equivalence relatior on its boundary which is &4 -rotation ond B. So,L = B/~ anddB/ ~=X
is defined to be atandard spin®f L [14]. The identified equator a8 becomes the singular 1-complexbf this
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complexC is theaxisof the standard spin&. Note that if L. = RP3 thenX = RP? is a projective plane and is
not singular.

Now let oo be an interior point oB. ThenL — (X U {oo}) = §2 x R defines a foliation by 2-spheres. So, we
put the knotK in transverse position with respect to tHisfoliation. As in $3, we define the complexity ok to
be the sum of the geometric intersectionoivith the generic level 2-spheres of the foliationthAn presentation
of K is realized for a minimal complexity.

Let us remark that if. # R P3, thenk does not intersect the axis &f, because of the openness of the property
for a knot to be in transverse position with respect to a foliation (for the Morse property see [2,11]). But, for a
given thin presentation ok, one can define what we calltight presentationminimizing |K N X'| by allowing
intersection withC; this corresponds to first maxima cancelling, so tightening the knot, with possible intersections
betweenk andC.

3. One-parameter families of spheres

From now on, we suppose thatis in a thin presentation (i) with only maxima; this is the corresponding
tight presentation. Lek,, be also in a thin presentation (i).

Let {:S’\,L},Le[o,l] denote a family of level 2-spheres in the tight presentatiok pfbetweenX and the first
maximum. Lel{@})\e[o,l] denote a family of spheres in the thin presentatiok gbetween a consecutive minimum
and maximum. Such a family is calledhgiddle slab[11]. For convenience, we fix the index notations [0, 1]
for $% andp € [0, 1] for L.

Lemma 3.1. (i) A surfaces; or S, is one and only one &, £ or C. (i) VA € [0, 1] Ju € [0, 1] such thatS,, is N
with respect taS; .

We deduce the previous result by studying the thin presentatidt,cnd that ofK. If one supposes the
contrary, then we can minimize the complexity. For details in the daseR P2, we refer to [4, Lemmas 2.2
and 2.3] and for the general case see [5, Lemmas 4.4 and 4.7].

4. Thegraph of singularities

We now study, using Cerf Theory, the intersection of the two corresponding families of punctured spheres,
{Sr}rer0, and{S,.} ue0,1) embedded iK = L — Int N(K). Without loss of generality, we suppose tBatg is H,
Sa=11s L, Su—oisC andS,—; is L. This is what we call the extremal conditions. About transversality arguments,
due to Cerf, we refer to [2, Chapter 2].

We then obtain 4Cerf graph of singularities” I". A pointin I" is a couple of parametets, 1) < [0, 1]2 for
which the corresponding surfacgsandS,, are tangent.

Apointin I'¢ = [0, 1]2— I', the exterior of the graph, corresponds to transverse surfaces. Note thatfogall
in the same connected component'd, all the S;’s have the same characteristi; £, C or N/ with respect to
S,.; and similarly for theS,,’s with respect taS,. The characteristics(, £, C and\ are locally constant i™°.

So, we associate to each component6ftwo characteristics from the sgt(, £, C, N'}: one with respect ta and
the other with respect ta. From Lemma 3(i), we then have the following result [5, Lemma 4.6].

Lemma 4.1. For a fixed A, the connected components bf on the same vertical line all have the same
characteristicH, £ or C, except that some can bé.

For a fixedu, the connected componentsiof on the same horizontal line all have the same characteristic
L or C, except that some can bé.



940 A. Deruelle / C. R. Acad. Sci. Paris, Ser. | 336 (2003) 937-940

By Gordon and Luecke [11], we may suppose that there does not exist @ pairin I"“ such thatS, is A/
with respect taS; ands;, is A with respect taS,,. Therefore, in a single connected componeni’6f we cannot
have both characteristics §f ands,, being\.

Letr =supu € [0,1] | S, is C}. By the extremal conditions, we have= 10, 1[. An index-1 pointinI” is a
critical point of I" that corresponds locally to the crossing of two straight lines. Lemmas 3(ii) and 4 then imply
that the corresponding poiit, #) in I" is an index-1 point of the graph. This means tha$,—; andS,—,; are
tangent in two different points. And furthermore, eachSpt;_. N S;—r+s. Sai=s+e N Su=r+e, Sr=s+e N Spu=r—s
or Sy—s—s N S;=1—¢, IS @ single tangency point, for small enougk O.

Finally, we study the configuration of the planar surfaces in a neighbourho@d:of We then deduce tha

intersects at most two times the sphefgsin the L-foliation and so exactly once the spid& This proves that
|[KNX|=1.
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