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Abstract

This Note concerns knots in a lens spaceL that produceS3 by Dehn surgery. We introduce the thin presentation of kn
in L, with respect to a standard spine. We prove that among such knots, those having a thin presentation with only
are 0-bridge or 1-bridge braids inL. In the caseL = RP 3, we deduce that minimally braided knots inRP 3 cannot yieldS3 by
Dehn surgery.To cite this article: A. Deruelle, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Présentation mince des nœuds dans les espaces lenticulaires. Cette Note concerne les nœuds d’un espace lenticulaL

qui produisentS3 par chirurgies de Dehn. Nous introduisons ici une présentation mince des nœuds deL, par rapport à une épin
standard. Nous prouvons alors que parmi ces nœuds, ceux qui possèdent une présentation mince n’ayant que des m
des 0 ou 1-tresses. Dans le cas oùL = RP 3, nous déduisons que les nœuds minimalement tressés deRP 3 ne peuvent produire
S3 par chirurgie de Dehn.Pour citer cet article : A. Deruelle, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

This work is about Dehn surgeries on knots inS3, and what kind of 3-manifolds can arise from such surgerie
particular, we are interested in the Dehn surgeries that yield lens spaces. We study knots in lens spaces yiS3,
trying to characterize such knots by introducing their thin presentation.

Let X = L − IntN(K) be the exterior of the knotK in a lens spaceL. If α is a slope on the boundary ofX

andVα is a solid torus, then the closed 3-manifold obtained byα-Dehn surgeryon the knotK is defined to be
X(α) = X ∪ Vα , whereα bounds a meridional disk inVα . The core ofVα becomes a knotKα in X(α), called the
core of the surgery. Note that the exterior of the knotKα in X(α), X(α)− IntN(Kα), is also homeomorphic toX.

ForV a Heegaard solid torus ofL, a 1-bridge braid inL is a union of a non-essential arc inV and a simple arc
on ∂V [7]. A 0-bridge braid is a torus knot on∂V .
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We know that a non-trivial knot inS3 cannot produceS1 × S2 norS3 by Dehn surgery [6,11]. In the following
L is assumed to be a lens space (neitherS3 norS1 ×S2). LetK be a knot inL that producesS3 by α-Dehn surgery
and letKα be the core of the surgery inS3. Then, following Berge [1] and Gordon [9], we conjecture thatK is a
0-bridge or a 1-bridge braid inL. The main result of this Note is given in the following theorem.

Theorem 1.1. LetK be a knot inL yieldingS3 by Dehn surgery. If there exists a standard spineΣ such that a thin
presentation ofK with respect toΣ has only maxima, thenK is a 0-bridge or1-bridge braid inL. Furthermore,
L cannot beRP 3.

Gordon has conjectured thatDehn surgery on a non-trivial knot inS3 cannot yield a lens space of order less th
six [9]. The first lens space in terms of order isL(2,1) = RP 3. So, as a consequence of the Gordon Conjec
we have theRP 3-conjecture that states [12]:RP 3 cannot be obtained by Dehn surgery on a non-trivial knot inS3.
Let aminimally braided knotbe a knot inRP 3 having a thin presentation with only maxima. Then Theorem
implies the following corollary.

Corollary 1.2. A minimally braided knot inRP 3 cannot yieldS3 by Dehn surgery.

For the details of the proofs of the above results, we refer to [3,4] for the caseL = RP 3 in Theorem 1.1 and
Corollary 1.2. And in the case whereL �= RP 3 in Theorem 1.1, we refer to [5].

Let us now describe in a few words the sections of this Note and give a sketch of the proof of Theorem
We consider athin presentationof Kα , as defined by Gabai [6]. In a similar way, we define here athin

presentationof knots in a lens space and an associatedtight presentation, after fixing a spineΣ in L. This is
the goal of Section 2. Let us considerK in such a thin presentation inL. ThenS3 andL each admits a foliation
by spheres corresponding to the thin presentations ofKα andK, respectively. In the following, we denote bŷSα

andŜβ , the level 2-spheres in theS3 andL-foliations, respectively. LetSα = Ŝα ∩ X andSβ = Ŝβ ∩ X denote the
corresponding level surfaces inX.

Let Sα andSβ be such planar surfaces inX. Then we may assume thatSα andSβ are transverse and in gene
position. So, we define a pair of intersection planar graphs(Gα,Gβ) in the usual way [10]. Atrivial loop in a
planar graph is the boundary of a 1-sided disk-face. By [11,13],Gβ cannot represent all types. So, ifGα andGβ

contain no trivial loop, by [11, Proposition 2.0.1],Gα must contain aScharlemann cycle[15].
Let us remark that ifGα (resp.Gβ ) contains a trivial loop, then we say thatSβ (resp.Sα) is High or Low with

respect toSα (resp.Sβ ) or for short isH or L, according to the side where the disk-face is, inSβ (resp.Sα), with
respect toSα (resp.Sβ ) [6,11]. Furthermore, we define here another characteristic: ifGα contains a Scharleman
cycle then we say thatSβ is aCarrier with respect toSα , or justC for short [3–5]. IfSα (resp.Sβ ) is none of these
we say it isN .

In Section 3, we assume thatK has only maxima in its thin (and so its tight) presentation inL. We then produce
two one-parameter families of level surfaces, coming from theS3-foliation and theL-foliation, respectively.

We introduce in Section 4 the graph of singularities associated to the intersection of these two families
surfaces; for Cerf Theory, we refer to [2]. We then find two planar surfacesSα in S3 andSβ in L, and prove tha
|K ∩ Σ| = 1. Studying the configuration ofK we deduce that it is a 0-bridge or a 1-bridge braid (see [3] for
details). In the caseL = RP 3, K is then trivial or bounds aMöbius strip, so we have a contradiction [8].

2. Thin presentations

ForKα in S3, the thin presentation is due to Gabai [6]. ForK in L = L(p,q), we remark thatL is a closed 3-bal
B with an equivalence relation∼ on its boundary which is a2πq

p
-rotation on∂B. So,L = B/ ∼ and∂B/ ∼= Σ

is defined to be astandard spineof L [14]. The identified equator ofB becomes the singular 1-complex ofΣ ; this
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complexC is theaxisof the standard spineΣ . Note that ifL = RP 3 thenΣ = RP 2 is a projective plane andC is
not singular.

Now let∞ be an interior point ofB. ThenL − (Σ ∪ {∞}) ∼= S2 × R
∗+ defines a foliation by 2-spheres. So, w

put the knotK in transverse position with respect to thisL-foliation. As inS3, we define the complexity ofK to
be the sum of the geometric intersections ofK with the generic level 2-spheres of the foliation. Athin presentation
of K is realized for a minimal complexity.

Let us remark that ifL �= RP 3, thenK does not intersect the axis ofΣ , because of the openness of the prope
for a knot to be in transverse position with respect to a foliation (for the Morse property see [2,11]). Bu
given thin presentation ofK, one can define what we call atight presentation, minimizing |K ∩ Σ| by allowing
intersection withC; this corresponds to first maxima cancelling, so tightening the knot, with possible interse
betweenK andC.

3. One-parameter families of spheres

From now on, we suppose thatK is in a thin presentation (inL) with only maxima; this is the correspondin
tight presentation. LetKα be also in a thin presentation (inS3).

Let {Ŝµ}µ∈[0,1] denote a family of level 2-spheres in the tight presentation ofK, betweenΣ and the first
maximum. Let{Ŝλ}λ∈[0,1] denote a family of spheres in the thin presentation ofKα between a consecutive minimu
and maximum. Such a family is called amiddle slab[11]. For convenience, we fix the index notationsλ ∈ [0,1]
for S3 andµ ∈ [0,1] for L.

Lemma 3.1. (i) A surfaceSλ or Sµ is one and only one ofH, L or C. (ii) ∀λ ∈ [0,1] ∃µ ∈ [0,1] such thatSµ isN
with respect toSλ.

We deduce the previous result by studying the thin presentation ofKα and that ofK. If one supposes th
contrary, then we can minimize the complexity. For details in the caseL = RP 3, we refer to [4, Lemmas 2.
and 2.3] and for the general case see [5, Lemmas 4.4 and 4.7].

4. The graph of singularities

We now study, using Cerf Theory, the intersection of the two corresponding families of punctured s
{Sλ}λ∈[0,1] and{Sµ}µ∈[0,1] embedded inX = L− IntN(K). Without loss of generality, we suppose thatSλ=0 isH,
Sλ=1 is L, Sµ=0 is C andSµ=1 is L. This is what we call the extremal conditions. About transversality argum
due to Cerf, we refer to [2, Chapter 2].

We then obtain a“Cerf graph of singularities”Γ . A point in Γ is a couple of parameters(λ,µ) ∈ [0,1]2 for
which the corresponding surfacesSλ andSµ are tangent.

A point in Γ c = [0,1]2−Γ , the exterior of the graph, corresponds to transverse surfaces. Note that for all(λ,µ)

in the same connected component ofΓ c , all theSλ’s have the same characteristicH, L, C or N with respect to
Sµ; and similarly for theSµ ’s with respect toSλ. The characteristicsH, L, C andN are locally constant inΓ c.
So, we associate to each component ofΓ c, two characteristics from the set{H,L,C,N }: one with respect toλ and
the other with respect toµ. From Lemma 3(i), we then have the following result [5, Lemma 4.6].

Lemma 4.1. For a fixed λ, the connected components ofΓ c on the same vertical line all have the sam
characteristicH, L or C, except that some can beN .

For a fixedµ, the connected components ofΓ c on the same horizontal line all have the same characteristicH,
L or C, except that some can beN .
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By Gordon and Luecke [11], we may suppose that there does not exist a pair(λ,µ) in Γ c such thatSµ is N
with respect toSλ andSλ is N with respect toSµ. Therefore, in a single connected component ofΓ c, we cannot
have both characteristics ofSλ andSµ beingN .

Let t = sup{µ ∈ [0,1] | Sµ is C}. By the extremal conditions, we havet ∈ ]0,1[. An index-1 point inΓ is a
critical point ofΓ that corresponds locally to the crossing of two straight lines. Lemmas 3(ii) and 4 then
that the corresponding point(s, t) in Γ is an index-1 point of the graphΓ . This means thatSλ=s andSµ=t are
tangent in two different points. And furthermore, each ofSλ=s−ε ∩ Sµ=t+ε, Sλ=s+ε ∩ Sµ=t+ε, Sλ=s+ε ∩ Sµ=t−ε

or Sλ=s−ε ∩ Sµ=t−ε , is a single tangency point, for small enoughε > 0.
Finally, we study the configuration of the planar surfaces in a neighbourhood of(s, t). We then deduce thatK

intersects at most two times the spheresŜµ in theL-foliation and so exactly once the spineΣ . This proves tha
|K ∩ Σ| = 1.
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