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Abstract

We characterize in terms of monotonicity basic properties of quasilinear elliptic partial differential operators which make it
possible to obtain a Liouville-type comparison principle for entire solutions of quasilinear elliptic partial differential inequalities
of the formA(u) + |u|9~1u < A(v) + [v|2~ v, which belong only locally to the corresponding Sobolev space&om > 2.

We establish that such properties are inherent for a wide class of quasilinear elliptic partial differential operators. Typical
examples of such operators are g aplacian and its well-known modifications forl p < 2. To citethisarticle: V.V. Kurta,

C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Résumé

Sur un principe de comparaison de type Liouville pour des solutions d'inégalités elliptiques quasi-linéaire©n
caractérise en terme de monotonie, des propriétés fondamentales d'opérateurs aux dérivées partielles, elliptiques, quasi-linéair
permettant d’établir un principe de comparaison de type Liouville, des solutions faibles d’'inégalités aux dérivée partielles,
elliptiques, quasi-linéaires de la formgu) + |u|‘1_1u < A(v) + |v|q_lv. Ces solutions appartiennent seulement localement
aux espaces de Sobolev correspondant ddhsn > 2. On montre que ces propriétés sont valables pour une large classe
d’opérateurs aux dérivées partielles elliptiques, quasi-linéaires. Des exemples typiques de tels opérateyrdegiatien et
ses modifications bien connues pout b < 2. Pour citer cet article: V.V. Kurta, C. R. Acad. Sci. Paris, Ser. | 336 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

This work is devoted to the study of a Liouville-type phenomenon for entire solutions of a wide class of
quasilinear elliptic partial differential inequalities. It is well known that, in order to obtain and even to formulate
Liouville’s theorem, for example, for subharmonic functiong&sn one needs to compare an arbitrary subharmonic
function with a constant which is, naturally, a trivial superharmonic function. Due to the linearity of the Laplacian
operator one can reformulate this famous result in the form of a Liouville-type comparison priragple:
(u(x), v(x)) be an entire solution of the inequality Au < Av on R? such that u(x) > v(x). Then u(x) = v(x),
up to a constant, on R2.

Y This work was reported by the author at the 981st AMS Meeting in October, 2002.
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This classical field of analysis, well-known as Liouville-type theorems, is again of great interest due to the
nonlinearity of the problems considered. However, in a nonlinear situation almost all Liouville-type results obtained
have been established by comparing an arbitrary solution of a nonlinear problem with zero, which is a trivial
solution of the same or the corresponding nonlinear problem.

The main purpose of this work is to characterize in terms of monotonicity basic properties of quasilinear elliptic
partial differential operators which make it possible to obtain a Liouville-type comparison principle for arbitrary
solutions of quasilinear elliptic partial differential inequalities of the form

AG) + ul ™ < A@) + ol" o, )

Note that such properties are inherent for a wide class of quasilinear elliptic partial differential operators. Typical
examples of such operators are fhaplacian

Ap(w) :=div(|Vw|"2Vw) 2)
for 1 < p <2 and its well-known modification, see, e.g., [5, p. 155],
. "0 (low|P % ow
A =Y —|(|—| —
p(w) Z 3)61‘ ( 3)61‘ 8)6,') (3)

i=1
forn>2and 1< p < 2.

2. Definitions
Let A(w) be a differential operator given formally by

n

d
A = —A;(x, Vw). 4
(w) ; g, i Vw) 4)
Here and in what follows: > 2. Assume that the functions; (x,&), i = 1,...,n, satisfy the Carathéodory

conditions orR” x R”. Namely, they are continuous gnat almost allk € R” and measurable in at all& € R".

Definition 2.1. Let @ > 1 be a given number. An operatdr(w), given by (4), is said to be-monotone if
Ai(x,00=0, i=1,...,n, atalmost allk € R"”, and there exists a positive const&hsuch that

0< Y (5 — &) (Ai(x.8) — Ai(x.£7)) ®)
i=1

and
n a/2 n a—1
(Z<Ai (6 - Al 52»2) < K(Z@f ) (A8 — Al 52») ®
i—1 i—1
hold at allg1, £2 € R" and almost alk € R".

Note that condition (5) is the well-known monotonicity condition in PDE theory, while condition (6) is the
propera-monotonicity condition for partial differential operators, considered first in [2]; see also [3,4]. Note also
thata-monotonicity condition (6) in the cag® = 0 is in turn a special case of the very general growth condition
for quasilinear elliptic partial differential operators, considered first in [6].

Now we present algebraic inequalities from which it follows immediately thatpheplacianA, and its
modificationA , satisfy thex-monotonicity condition forr = p and 1< p < 2.

Lemma 2.2.Letl <o <2 andleta = (a,...,a,) and b = (b1, ..., b,) be arbitrary vectors in R” of length
lal =, /af +---+a?and |b|= bf + - + b2, respectively. Then there exists a positive constant K such that the
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inequalities
n a/2 n a—1
(Z(aiw—z - bi|b|°‘—2)2> < K(Z(ai —bi)(ailal*% - bl-|b|“—2)) (7

i=1 i=1
and

. )2 " a—1
(Z(ai |a;i|*~% = bi b; I“_Z)z) < K(Z(ai — bi)(ailai|*~2 — bilb; |a_2)> ®

i=1 i=1
hold.

Remark 1. The statements of Lemma 2.2 were proved in [2]; see also [4].

It is important to note that there exigtmonotone partial differential operators with arbitrary degeneracy. For
instance, the weighteg-Laplacian,
Ap(w) = div(a(x)|Vw|P"2Vw), 9)

see, e.g., [1, p. 55], with any measurable nonnegative uniformly bounded fua¢tipon R” is «-monotone with
a = p forany fixed 1< p < 2.

Remark 2. We restrict ourselves here to the study of inequality (1), although all the results formulated below are
valid with an arbitrary functiory (x, w), instead oflw|? 1w, satisfying suitable growth and regularity conditions
and being such that

(fx,0) = fFoxr,w)w—u) = clv—uldt? (10)

for a fixed number > 0, almost allx € R”, and allx, v € RY. Actually, our approach allows us to consider certain
nonnegative functions(x) in place of the constart

Definition 2.3. Let « > 1 andg > 0 be given numbers, and let the operatofw) be «-monotone. By an
entire solution of inequality (1) we understand a pair of functiong), v(x)) on R" which belong to the space
wl (RN L, 10c(R") and satisfy the integral inequality

a,loc
n n
/|:Z<pxiAi(x, Vu) — |u|q_lug0:| dx > /|:Z<pxiAi(x, Vv) — |v|q_1v<p] dx (112)
re Li=1 R Li=1

for every nonnegative functiop € C*°(R") with compact support.

Analogous definitions of solutions of the inequalities
—A@) = lul' " u (12)
and
—A(@) <ol M, (13)

which are special cases of inequality (1) fioe= 0 andu = 0, respectively, can be immediately obtained from
Definition 2.3.

Definition 2.4. Let « > 1 andg > 0 be given numbers, and let the operatofw) be «-monotone. By an
entire solution of inequality (12) (resp., (13)) we understand a funatiorn) on R” which belongs to the space

W;-,IOC(Rn) N L, 1oc(R™) and satisfies the integral inequality
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/Z(pxlA (x, Vw)dx — / lw|? twedx >0 (resp.,<0) (14)
Rnr 1= 1 R7
for every nonnegative functiop € C°°(R") with compact support.

3. Main results

Theorem 3.1.Letn > 2, and et o and ¢ be given numberssuchthat e < n, ;24 <o <2and1<q <D et
the operator A(w) be a-monotone, and let (u(x), v(x)) be an entire solution of (1) on R” such that u(x) > v(x).
Then u(x) = v(x) on R".

Theorem 3.2.Let n > 2, and let o« and ¢ be given numberssuchthate <n, 1<a <2, g >1landg > "D | g
the operator A(w) be «-monotone. Then for any given constant ¢ > 0 there exists no entire solution (u(x) v(x))
of (1) on R"” such that u(x) > v(x) +c.

Theorem 3.3.Let n =2, « = 2, and let ¢ > 1 be a given number. Let the operator A(w) be a-monotone, and let
(u(x), v(x)) be an entire solution of (1) on R” such that u(x) > v(x). Then u(x) = v(x) on R".

Theorem 3.4.Let n =2, o = 2 and ¢ = 1. Let the operator A(w) be a-monotone. Then for any given constant
¢ > 0 there exists no entire solution (1(x), v(x)) of (1) on R” such that u(x) > v(x) +c.

Remark 3. To provide more clarity to the understanding of Theorems 3.1-3.4, we note thatf@, n > o >
1 9> (‘" l)" and a suitable positive constanta pair of functiongu (x), v(x)) such that

u(x) — C(1+ |x|a/(0t—l))(1—0¢)/(q—0¢+1) and U()C) =0 (15)

is an entire solution of inequality (1) with (w) = A4 (w) or A(w) = Ay (w), respectively. It is easy to see that
there exists no positive constansuch that«(x) > v(x) + c.

Analogous results for solutions of inequalities (12) and (13) can be immediately obtained from Theorems 3.1—
3.4. We formulate only two of them.

Theorem 3.5.Let n > 2, and let « and ¢ be given numbers such that o < n, % <a<2and 1l
Let the operator A(w) be «-monotone, and let u(x) and v(x) be entire solutions of mequalltl&e (12) and 13,
respectively, on R” such that u(x) > v(x). Then u(x) = v(x) on R".

n(a—l)
n—o -

Theorem 3.6.Let n > 2, and let « and ¢ be given numberssuch that e <n, 1<a <2, ¢ > 1and g > "1,

Let the operator A(w) be a-monotone. Then for any given constant ¢ > 0 there exist no entire solutions u (x) and
v(x) of inequalities (12) and (13), respectively, on R” such that u(x) > v(x) + c.
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