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Abstract

We characterize in terms of monotonicity basic properties of quasilinear elliptic partial differential operators which
possible to obtain a Liouville-type comparison principle for entire solutions of quasilinear elliptic partial differential inequ
of the formA(u) + |u|q−1u � A(v) + |v|q−1v, which belong only locally to the corresponding Sobolev spaces onR

n, n � 2.
We establish that such properties are inherent for a wide class of quasilinear elliptic partial differential operators.
examples of such operators are thep-Laplacian and its well-known modifications for 1< p � 2. To cite this article: V.V. Kurta,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur un principe de comparaison de type Liouville pour des solutions d’inégalités elliptiques quasi-linéaires.On
caractérise en terme de monotonie, des propriétés fondamentales d’opérateurs aux dérivées partielles, elliptiques, qua
permettant d’établir un principe de comparaison de type Liouville, des solutions faibles d’inégalités aux dérivée p
elliptiques, quasi-linéaires de la formeA(u) + |u|q−1u � A(v) + |v|q−1v. Ces solutions appartiennent seulement localem
aux espaces de Sobolev correspondant dansR

n, n � 2. On montre que ces propriétés sont valables pour une large c
d’opérateurs aux dérivées partielles elliptiques, quasi-linéaires. Des exemples typiques de tels opérateurs sont lep-laplacien et
ses modifications bien connues pour 1< p � 2. Pour citer cet article : V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

This work is devoted to the study of a Liouville-type phenomenon for entire solutions of a wide cla
quasilinear elliptic partial differential inequalities. It is well known that, in order to obtain and even to form
Liouville’s theorem, for example, for subharmonic functions onR

2, one needs to compare an arbitrary subharm
function with a constant which is, naturally, a trivial superharmonic function. Due to the linearity of the Lap
operator one can reformulate this famous result in the form of a Liouville-type comparison principlLet
(u(x), v(x)) be an entire solution of the inequality 
u � 
v on R

2 such that u(x) � v(x). Then u(x) = v(x),
up to a constant, on R

2.

✩ This work was reported by the author at the 981st AMS Meeting in October, 2002.
E-mail address: vvk@ams.org (V.V. Kurta).
1631-073X/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00225-5
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This classical field of analysis, well-known as Liouville-type theorems, is again of great interest due
nonlinearity of the problems considered. However, in a nonlinear situation almost all Liouville-type results ob
have been established by comparing an arbitrary solution of a nonlinear problem with zero, which is a
solution of the same or the corresponding nonlinear problem.

The main purpose of this work is to characterize in terms of monotonicity basic properties of quasilinear
partial differential operators which make it possible to obtain a Liouville-type comparison principle for arb
solutions of quasilinear elliptic partial differential inequalities of the form

A(u) + |u|q−1u � A(v) + |v|q−1v. (1)

Note that such properties are inherent for a wide class of quasilinear elliptic partial differential operators.
examples of such operators are thep-Laplacian


p(w) := div
(|∇w|p−2∇w

)
(2)

for 1 < p � 2 and its well-known modification, see, e.g., [5, p. 155],


̃p(w) :=
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂w

∂xi

∣∣∣∣
p−2

∂w

∂xi

)
(3)

for n � 2 and 1< p � 2.

2. Definitions

Let A(w) be a differential operator given formally by

A(w) =
n∑

i=1

d

dxi

Ai(x,∇w). (4)

Here and in what followsn � 2. Assume that the functionsAi(x, ξ), i = 1, . . . , n, satisfy the Carathéodor
conditions onRn × R

n. Namely, they are continuous inξ at almost allx ∈ R
n and measurable inx at all ξ ∈ R

n.

Definition 2.1. Let α > 1 be a given number. An operatorA(w), given by (4), is said to beα-monotone if
Ai(x,0) = 0, i = 1, . . . , n, at almost allx ∈ R

n, and there exists a positive constantK such that

0�
n∑

i=1

(
ξ1
i − ξ2

i

)(
Ai

(
x, ξ1)− Ai

(
x, ξ2)) (5)

and (
n∑

i=1

(
Ai

(
x, ξ1)− Ai

(
x, ξ2))2)α/2

�K
(

n∑
i=1

(
ξ1
i − ξ2

i

)(
Ai

(
x, ξ1)− Ai

(
x, ξ2)))α−1

(6)

hold at allξ1, ξ2 ∈ R
n and almost allx ∈ R

n.

Note that condition (5) is the well-known monotonicity condition in PDE theory, while condition (6) is
properα-monotonicity condition for partial differential operators, considered first in [2]; see also [3,4]. Note
thatα-monotonicity condition (6) in the caseξ2 = 0 is in turn a special case of the very general growth condi
for quasilinear elliptic partial differential operators, considered first in [6].

Now we present algebraic inequalities from which it follows immediately that thep-Laplacian
p and its
modification
̃p satisfy theα-monotonicity condition forα = p and 1< p � 2.

Lemma 2.2.Let 1 < α � 2, and let a = (a1, . . . , an) and b = (b1, . . . , bn) be arbitrary vectors in R
n of length

|a| =
√

a2
1 + · · · + a2

n and |b| =
√

b2
1 + · · · + b2

n, respectively. Then there exists a positive constant K such that the
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n∑

i=1

(
ai |a|α−2 − bi |b|α−2)2)α/2

� K
(

n∑
i=1

(ai − bi)
(
ai |a|α−2 − bi |b|α−2))α−1

(7)

and (
n∑

i=1

(
ai |ai|α−2 − bi |bi |α−2)2)α/2

� K
(

n∑
i=1

(ai − bi)
(
ai |ai|α−2 − bi|bi |α−2))α−1

(8)

hold.

Remark 1. The statements of Lemma 2.2 were proved in [2]; see also [4].

It is important to note that there existα-monotone partial differential operators with arbitrary degeneracy.
instance, the weightedp-Laplacian,


̄p(w) := div
(
a(x)|∇w|p−2∇w

)
, (9)

see, e.g., [1, p. 55], with any measurable nonnegative uniformly bounded functiona(x) onR
n is α-monotone with

α = p for any fixed 1< p � 2.

Remark 2. We restrict ourselves here to the study of inequality (1), although all the results formulated bel
valid with an arbitrary functionf (x,w), instead of|w|q−1w, satisfying suitable growth and regularity conditio
and being such that(

f (x, v) − f (x,u)
)
(v − u) � c|v − u|q+1 (10)

for a fixed numberc > 0, almost allx ∈ R
n, and allu,v ∈ R

1. Actually, our approach allows us to consider cert
nonnegative functionsc(x) in place of the constantc.

Definition 2.3. Let α > 1 and q > 0 be given numbers, and let the operatorA(w) be α-monotone. By an
entire solution of inequality (1) we understand a pair of functions(u(x), v(x)) on R

n which belong to the spac
W1

α,loc(R
n) ∩ Lq,loc(R

n) and satisfy the integral inequality∫
Rn

[
n∑

i=1

ϕxiAi(x,∇u) − |u|q−1uϕ

]
dx �

∫
Rn

[
n∑

i=1

ϕxiAi(x,∇v) − |v|q−1vϕ

]
dx (11)

for every nonnegative functionϕ ∈ C∞(Rn) with compact support.

Analogous definitions of solutions of the inequalities

−A(u) � |u|q−1u (12)

and

−A(v) � |v|q−1v, (13)

which are special cases of inequality (1) forv = 0 andu = 0, respectively, can be immediately obtained fr
Definition 2.3.

Definition 2.4. Let α > 1 and q > 0 be given numbers, and let the operatorA(w) be α-monotone. By an
entire solution of inequality (12) (resp., (13)) we understand a functionw(x) on R

n which belongs to the spac
W1

α,loc(R
n) ∩ Lq,loc(R

n) and satisfies the integral inequality
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∫
Rn

n∑
i=1

ϕxiAi(x,∇w)dx −
∫
Rn

|w|q−1wϕ dx � 0 (resp.,�0) (14)

for every nonnegative functionϕ ∈ C∞(Rn) with compact support.

3. Main results

Theorem 3.1.Let n � 2, and let α and q be given numbers such that α < n, 2n
n+1 � α � 2 and 1 � q � n(α−1)

n−α
. Let

the operator A(w) be α-monotone, and let (u(x), v(x)) be an entire solution of (1) on R
n such that u(x) � v(x).

Then u(x) = v(x) on R
n.

Theorem 3.2.Let n � 2, and let α and q be given numbers such that α < n, 1 < α � 2, q � 1 and q >
n(α−1)
n−α

. Let
the operator A(w) be α-monotone. Then for any given constant c > 0 there exists no entire solution (u(x), v(x))

of (1) on R
n such that u(x) � v(x) + c.

Theorem 3.3.Let n = 2, α = 2, and let q > 1 be a given number. Let the operator A(w) be α-monotone, and let
(u(x), v(x)) be an entire solution of (1) on R

n such that u(x) � v(x). Then u(x) = v(x) on R
n.

Theorem 3.4.Let n = 2, α = 2 and q = 1. Let the operator A(w) be α-monotone. Then for any given constant
c > 0 there exists no entire solution (u(x), v(x)) of (1) on R

n such that u(x) � v(x) + c.

Remark 3. To provide more clarity to the understanding of Theorems 3.1–3.4, we note that forn � 2, n > α >

1, q >
(α−1)n
n−α

and a suitable positive constantc, a pair of functions(u(x), v(x)) such that

u(x) = c
(
1+ |x|α/(α−1)

)(1−α)/(q−α+1) and v(x) = 0 (15)

is an entire solution of inequality (1) withA(w) = 
α(w) or A(w) = 
̃α(w), respectively. It is easy to see th
there exists no positive constantc such thatu(x) � v(x) + c.

Analogous results for solutions of inequalities (12) and (13) can be immediately obtained from Theorem
3.4. We formulate only two of them.

Theorem 3.5.Let n � 2, and let α and q be given numbers such that α < n, 2n
n+1 � α � 2 and 1 � q � n(α−1)

n−α
.

Let the operator A(w) be α-monotone, and let u(x) and v(x) be entire solutions of inequalities (12) and (13),
respectively, on R

n such that u(x) � v(x). Then u(x) = v(x) on R
n.

Theorem 3.6.Let n � 2, and let α and q be given numbers such that α < n, 1 < α � 2, q � 1 and q > n(α−1)
n−α

.
Let the operator A(w) be α-monotone. Then for any given constant c > 0 there exist no entire solutions u(x) and
v(x) of inequalities (12) and (13), respectively, on R

n such that u(x) � v(x) + c.
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