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Abstract

Let (S, 0) be a rational complex surface singularity with reduced fundamental cycle, also knowmiasrel singularity.
Using a fundamental result of M. Spivakovsky, we explain how to describe the equisingularity type of the discriminant curve
for a generic projection ofS, 0) onto ((CZ, 0) from the resolution of S, 0). To cite this article: R. Bondil, C. R. Acad. Sci.
Paris, Ser. |1 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Discriminant d’'une projection générique d’une singularité minimale de surface normale.Soit (S, 0) une singularité
rationnelle de surface complexe a cycle fondamental réduit, appelée aussi singulaiitéale En utilisant un résultat
fondamental de M. Spivakovsky, on montre comment le type d’équisingularité de la courbe plane discriminant d’'une projection
générique d€sS, 0) sur (C2,0) est déterminé par la résolution @&, 0). Pour citer cet article: R. Bondil, C. R. Acad. Sci.

Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Version frangaise abrégée

Soit (S, 0) une singulariténinimalede surface complexe normale, c’est-a-dire une singularité rationnelle a cycle
fondamental réduit (cf. [10], II.2, en dimension quelconque voir [7] § 3.4 et [2] § 5).

On plonge(s, 0) dans un(C", 0) et on considére une projectign, : (S, 0) — (C2, 0), restriction as d’une
projection linéaire de noyau utN(— 2)-planD. Lorsquepp est finie, on not&”1 (D) I'adhérence du lieu critique
de(pp)s\(0), appelée courbe polaire pour la directibn

Pour D générique, on montre dans cette Note que le type d'équisingularité de la courbg plgn®) C
(C?,0), image deC1(D) par pp et appeléaliscriminant de la projectiorpp, ne dépend que du graphe dual de
résolution de(S, 0) (cf. la remarque p. 6) et on décrit ce discriminant générique, que I'on nadtesa
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On se fonde sur un résultat de M. Spivakovsky (Théoréme 2.3) décrivant la transformée stéigtgesur
la résolution minimaleX de la singularité minimalés, 0), pour D dans un ouvert dense de la Grassmannienne
G(N — 2, N) des(N — 2) plans deCV.

Les résultats clefs de cette Note sont démontrés au paragraphe 3 :

Soit (S, 0) une singulariténinimalede surface normale plongée daiis", 0) etz : X — (S, 0) sa résolution
minimale, que I'on peut écrire comme une compositios 1 o - - - o T, d’éclatements de points. Alofsest une
résolutionminimaledes singularités de la courbe polaire générique.

En outre la courbe polaire générigGg(D) a toutes ses branches de multiplicité 1 ou 2, et en particulier planes.

Enfin, la projection d€'1(D) sur le discriminant ,, préserve le contact entre les branches, c'est-a-dire qu’elles
sont séparées au bout du méme nombre d’éclatements de points.

Avec ces résultats, et le théoreme de Spivakovsky, il est facile d’obtenir pour chaque graphe de réSolution
d’une singularité minimale, la classe d’équisingularité du discriminant génédiggecomme cela est expliqué au
paragraphe 4, ou I'on donne aussi des exemples.

0. Introduction

This Note is organized as follows: in Section 1 we recall the definitions of polar curves, discriminants and
a remarkable property of transversality of Briancon—Henry (Theorem 1.2). For minimal surface singularities, a
theorem of Spivakovsky describes the behavior of the generic polar curve (cf. Section 2). We use this theorem in
Section 3 to prove lemmas relating on the one hand the resolution of the generic polar curve to the resolution of
a minimal surface singularity, and on the other hand, polar curves and discriminants. Gathering these results, ou
main theorem in Section 4 provides a combinatorial way to describe the discriminant.

1. Polar curves and discriminants

Let (S, 0) be a normal complex surface singularity, 0), embedded ifC" , 0): for any (N — 2)-dimensional
vector subspac® of CV, we consider a linear projectic®’ — C? with kernel D and denote by p: (S, 0) —
(C?,0), the restriction of this projection t¢s, 0).

Restricting ourselves to the such thatp, is finite, and considering a small representafivef the germ(S, 0),
we define, as in [9], (2.2.2), theolar curveC1(D) of the germ(S, 0) for the directionD, as the closure ii§ of
the critical locus of the restriction gfp to S\ {0}. As explained in loc. cit., it makes sense to say that for an
open dense subset of the Grassmann manéall — 2, N) of (N — 2)-planes inC", the space curveg; (D) are
equisingulaiin terms of strong simultaneous resolutions.

Then we define thdiscriminantA ,, as (the germ at 0 of) the reduced analytic curve@t, 0) image ofC1(D)
by the finite morphisnpp.

Again, one may show that, for a generic choicénfthe discriminants obtained agguisingular germs of plane
curves but we will need a much more precise result, that demands another definition (cf. [3], IV.3):

Definition 1.1. Let (X, 0) c (CV, 0) be a germ of reduced curve. Then a linear projeciot — C2 will be
said to begenericwith respect ta X, 0) if the kernel of p does not contain any limit of bisecantsXo(cf. [3] for
an explicit description of the congs(X, 0) formed by the limits at O of bisecants 10).

We now state the following transversality result (proved for curves on surfad@$iaf[4], Theorem 3.12 and
in general as the “lemme-clé” in [11], V, (1.2.2)):

Theorem 1.2.Let pp: (S,0) — (C2,0) be as above, and1(D) C (S,0) c (CV, 0) be the corresponding polar
curve. Then there is an open dense sulbsef G(N — 2, N) such that forD € U the restriction ofp to C1(D) is
generic in the sense of Definitidnl



R. Bondil / C. R. Acad. Sci. Paris, Ser. | 337 (2003) 195-200 197

Definition 1.3.For all D in the open subséf of Theorem 1.2, the discriminaurt,,, are equisingular in the sense
of the well-known equisingularity theory for germs of plane curves (cf., e.g., the account at the beginning of [3]):
we will call this equisingularity class thgeneric discriminanof (S, 0).

2. Polar curves for minimal singularities of surface after Spivakovsky
We first recall how one may define a minimal singularity in the case of normal surfaces (cf. [10], 11.2):

Definition 2.1. A normal surface singularitys, 0) is said to beminimalif it is rational with reduced fundamental
cycle (see [1] for these latter notions).

Letw : (X, E) — (S, 0) be the minimal resolution of the singularity, 0), whereE = = ~1(0) is the exceptional
divisor, with componentg;. A cyclewill be by definition a divisor with support of, i.e., a linear combination
> a;L; with a; € Z (ora; € Q for aQ-cycle).

Considering the dual graph associated to the exceptional divisbr(cf. [10], I.1) in which each component
L, gives a vertexx and two vertices are connected if, and only if, the corresponding components intersect, the
minimal singularities have the following easy characterization (cf. loc. cit. I1.2):

Lemma 2.2.LetI" be as above the dual graph associated to the minimal resolution of a normal surface singularity
(S,0). For each vertexx € I', one defines its weighb(x) := —Lf (self-intersection of the corresponding
componentL,) and its valencey (x), which is the number of vertices connectedrtoThen (S, 0) is minimal

if, and only if, " isatree and forallk € I, L, ~ IE”}C andw(x) = y(x).

To two verticesx, y € I (which is a tree), we associate the shortest chaif inonnecting them, which we
denote byx, y]. Thedistanced (x, y) is by definition the number of edges fn y].

In [10], IIl.5, Spivakovsky further introduces the following numbgr associated to each vertaxe I". If
Z.L,y < 0 (where. denotes the intersection number afié= ) .- L the reduced fundamental cycle), i.e., if
w(x) > y(x) puts, :=1 (andx is said to be non-Tyurina). Otherwise (i.e.uif(x) = y(x)), x is said to be a
Tyurina vertex; then denoté the Tyurina component df' containingx (i.e., the maximal connected subgraph of
I" containing only Tyurina vertices), and pyt:=d(x, " \ A) + 1.

Let x, y be two adjacent vertices: the edge () in I" is called acentral arcif s, = s,. A vertexx is called a
central vertexf there are at least two verticgsadjacent toc such thats, = s, — 1 (cf. [10]).

Eventually, we define the followin@-cycle Z, on the minimal resolutioX of (S, 0) by:

Zo=Y sily—Zk, (1)

xel’

whereT is the dual graph of the resolution, afigt is the numerically canonic&-cyclel
One may now quote the important Theorem 5.4 in [10] in the following3xayloc. cit. it is used to compare
the minimal resolution with the resolution of the Nash transform):

Theorem 2.3.Let (S, 0) be aminimal normal surface singularity. There is an open dense subiseif the open
setU of Theorenl.2, such that for allD € U’ the strict transformC; (D) of C1(D) on X:

(a) is a multi-germ of smooth curves intersecting each compdneaf E transversally in exactly-Z e, . L, points

1 Uniquely defined by the condition that foralle I', Zg.L, = -2 — L_% since the intersection product @his negative-definite.
2 see also the account in [8], (7.4); just beware that one term is missing in the formulamivirg—Z,.L, there.
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(b) goes through the point of intersectionfof and L, if and only ifs, = s, (point corresponding to aentral arc
of the grapf. Furthermore, the curve€’ (D), with D € U’ do not share other common poir{tsase points
and these base points are simple, i.e., the cut/g®) are separated when one blows up these points once.

3. From polar curves to discriminants, key lemmas

Lemma 3.1.Let (S, 0) be aminimal normal surface singularity, embedded@’ andzx : X — (S, 0) its minimal
resolution, which is a compositiam o - - - o 77, Of point blow-ups. We claim that this composition of blow-ups is
also the minimal resolution of the generic polar cuwg(D) for D € U’ as in Theoren2.3,

Proof. The fact thatr is a composition of point blow-ups is general for rational surface singularities (for a non-
cohomological proof in the case of minimal singularities, see [2], 5.9). Conclusion (a) in Theorem 2.3 certainly
gives thatr is a resolution of”1(D). We prove that this resolution is minimal: among the exceptional components
in X obtained by the last point blow-up, there is a comporigntorresponding either to a central vertexiofor

to the boundary of a central arc.

If L, corresponds to a central vertex, one computes from (1) and Theorem 2.3(a), the number of branches of
C1(D) intersectingL,, i.e., —Zg.Ly = —(3_sy + (sx + 1)L§ + 2). By the definition of a central vertex (before
Theorem 2.3), this must be at least two, which proves that these branches are not separatéq etd®ined.

If L, is the boundary of a central arc, |Bf be the other boundary: then bath andL, appear as exceptional
components of the last blow-up : X — S,_1 at 0._1. Now, the strict transform of’1(D) at the point Q_; can
not be smooth. Indeed, by an argumentin [6], 1.1, if it were smooth, then its strict tranS{¢/ on X, smooth
surface, would go through a smooth point of the exceptional divisar.

Lemma 3.2.For D € U’ as in Theoren®.3, the polar curveC1(D) on (S, 0) has only smooth branches and
branches of multiplicity two, the latter being exactly those for which the strict transform goes through a central arc
as in(b) of Theoren?.3.

Proof. Letthe notation be the same as in Theorem 2.3. Sific®) is a minimal singularity, the cycle ok defined
by the maximal ideal is reduced.
Hence by the projection formula for intersections, for any braficof the generic polar curv€1(D), the
multiplicity of C at 0 is the intersection multiplicity of its strict transfoi@ with the reduced exceptional divisor.
Then the description of the strict transform in Theorem 2.3 gives the conclusion.

Corollary 3.3. Take the chain of point blow-ups ovéE”, 0) that gives the minimal resolution ¢€1(D), 0) for
D e U'. Then, performing oveiC?, 0) the “same” succession of blow-ufthis makes sense because of foot@jte
we get the minimal resolution of the plane curvg,, = pp(C1(D)).

Proof. Since, by Lemma 3.2, the multiplicity of the branches@i{ D) is at most two, these branches are plane
curves and so are equisingular to thgémericprojection bypp (here we use Theorem 1.2): so we have dealt
with the branches. Further, by another result of Teissier’s (see [11], Chapter I, (6.2.1) and remark p. 354) a generic
projection is bi-Lipschitz, which implies that it preserves the contact between brahches.

3 Indeed, the contact between two branche&) and y»(¢r) which are both of multiplicity one or two, that we define as the number of
blow-ups to separate them, may be read from the ordeofrthe differencey, (r) — y»(¢), which is a bi-lipschitz invariant. Since we blow-up
always in the “same chart” these blow-ups actually dominate the blow-ups of the plane, as claimed in the corollary.
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4. Statement of the main result
Gathering the results from Lemma 3.1 to Corollary 3.3, we obtain:

Theorem 4.1.Let (S, 0) be a minimal normal surface singularity, embedde@h andx : X — (S, 0) its minimal
resolution, which is a compositiony o - - - o 7, of point blow-ups inC". Let As o be the generic discriminant of
(S, 0) (cf. Definition1.3). Then, performing ovetC2, 0) the “same” succession of blow-ugsf. footnote3), we
get the minimal resolution of the plane curgg o.

This result, together with Theorem 2.3 gives an easy way to get a combinatorial descrigtiongD):

Notation 4.2. (i) We denote byA,, the generic discriminant of thel, surface singularity, which is the
equisingularity class of the plane curve definedBy- y"*+1 = 0.

(i) We denote by, the generic discriminant of the singularity which is a cone over a rational normal curve of
degreen in Py.: it is defined by 2 — 2 distinct lines through the origin.

The assertion in (ii) follows from the fact thé&y (D) is the cone over the critical locus of the projection from
the rational normal curve onto a line, which has degree 2 by the Hurwitz formula.

We need to introduce several subsets of a dual gfaphe denote by vy = {x1, ..., x,} the set of Non-Tyurina
vertices inI", which are here the € I" such thatw(x) > y (x) (notation as in Lemma 2.2).

We denote byC, and @G, the set of central vertices and central arcs respectively” iicf. def. before
Theorem 2.3).

Corollary 4.3. From Theoren2.3we know that the components of the strict transf@rndiD)’ of C1(D) on the
resolutionX of (S, 0) go through components corresponding to elemenfgefu €, U C,, and we also know the
number of branches @f; (D)’ on each of these components, and their multiplicity by Leua

From Theorem#t.1 we know the contact between the corresponding branch€s(@) (or As,o): the contact
between two branches whose strict transforms lie respectively on a componand a component., equals
1+ N, whereN is the number of blow-ups necessary so thatand L, are no longer in the same Tyurina
component of the correspondiri§y, On) singularity, with the further requirement that if, say, the first branch
actually goes through a central aic, N L/, the numbelV corresponds to the number of blow-ups so taith x
andx’ are no longer in the same Tyurina componentas

From this, we get a precise descriptiond§ o: eachy; € I'yvy contributes with &, := 8,(x;)—y x;) (Cf. 4.2(ii)),
i.e., Aw(x;) — y(x;)) — 2 lines, and the contact between thégeand other branches of the discriminant is one.
For the contribution of the central elements, we first compute the number of branches on each components with
Theorem 2.3 and one easily shows (using 3.2) that they contributeygasurves and we use Theorem 4.1 to
determine the and the contacts as in the following examples:

Example 1.ConsiderS, 0) with the graph™ as on Fig. 1, where thedenote Tyurina vertices (witl (x) = y (x)),
and I'yr = {x1, ..., x4} with the weights indicated on the graph. Remark that as a generad,rute ¥ when
w(x;) = y(x;) + 1, hence here only; actually gives &,, equal to four lines.

(i) In the first Tyurina componentbounded byx1, x2, x4) there is a central vertex and a central arc, which
respectively give al 4, and ad 4, curve.

After two blow-ups the boundaries of the central arc and the central vertex are in distinct Tyurina components,
hence the contact between thg, andA,, is three.

(i) In the second Tyurina componefitounded by, x3), there is a central vertex: this givesta, which has
contact 1 with the othera 4, obtained.
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4 3 2
(zl) 1‘2)—.—(233)

(24) 2 w(zy) w(zs2) w(x3) w(zy)
(21)—@ - @&—T2)—@ - - @—(T3)—@-+-""+ o—(zn)
Fig. 1. Graph/™ as in Example 1.

Fig. 1. Graphe d&", comme dans Fig. 2. Graphl” as in Example 2.

'Exemple 1. Fig. 2. Graphe dé”, comme dans I'Exemple 2.

Hence, using coordinates, we may give as representative of the equisingularity &dass f*+ y*)(x?+y5)-
P+ )% +xh=0.

Example 2.1f (S, 0) is a cyclic-quotient singularity, i.e., has a graphas on Fig. 2, we may orddfyr = {x1 <
x2 < --- < x,} and each central elemen{central vertex or central arc) lies in a uniqug, x;+1] and is easily seen
to contribute taAgs o by a A, := AAI([xi.xi+1])’ wherel[x;, x;+1] is the number of vertices on the ch@n, x; 11]; the
contact between each, is one (i.e., their tangent cones have no common components)s He&s@w (x;) — 4 lines
fori =1andi =n, and 2v(x;) — 6 for 1 <i < n, all this lines being distinct. So, withh 4, as in Notation 4.2(i):
As,0="08x UAuy, ) YUbs, U --UAy, ., Udy,, With contact one between all the curves in the.*

Remark 1. In particular, the equisingularity type ofAs o, 0) depends only on the resolution graph(§f0), i.e.,
of the topological type ofS, 0), a fact which is known to be wrong for other normal surface singularities as shown
in [5].

Remark 2 (Added on proofs). The contribution of the components of the tangent agrel(yr) aséy, in the
generic discriminant ofS, 0) may be seen directly (i.e., without using Theorem 2.3) from the deformation on
(S, 0) on its tangent cone. We hope to come back to this in a future paper.
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