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Abstract

Let (S,0) be a rational complex surface singularity with reduced fundamental cycle, also known as aminimal singularity.
Using a fundamental result of M. Spivakovsky, we explain how to describe the equisingularity type of the discriminan
for a generic projection of(S,0) onto (C2,0) from the resolution of(S,0). To cite this article: R. Bondil, C. R. Acad. Sci.
Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Discriminant d’une projection générique d’une singularité minimale de surface normale.Soit (S,0) une singularité
rationnelle de surface complexe à cycle fondamental réduit, appelée aussi singularitéminimale. En utilisant un résulta
fondamental de M. Spivakovsky, on montre comment le type d’équisingularité de la courbe plane discriminant d’une p
générique de(S,0) sur (C2,0) est déterminé par la résolution de(S,0). Pour citer cet article : R. Bondil, C. R. Acad. Sci.
Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Soit(S,0) une singularitéminimalede surface complexe normale, c’est-à-dire une singularité rationnelle à
fondamental réduit (cf. [10], II.2, en dimension quelconque voir [7] § 3.4 et [2] § 5).

On plonge(S,0) dans un(CN,0) et on considère une projectionpD : (S,0)→ (C2,0), restriction àS d’une
projection linéaire de noyau un (N − 2)-planD. LorsquepD est finie, on noteC1(D) l’adhérence du lieu critique
de(pD)|S\{0}, appelée courbe polaire pour la directionD.

PourD générique, on montre dans cette Note que le type d’équisingularité de la courbe plane(∆pD,0) ⊂
(C2,0), image deC1(D) parpD et appeléediscriminant de la projectionpD , ne dépend que du graphe dual
résolution de(S,0) (cf. la remarque p. 6) et on décrit ce discriminant générique, que l’on notera∆S,0.

E-mail address:bondil@cmi.univ-mrs.fr (R. Bondil).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00260-7
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On se fonde sur un résultat de M. Spivakovsky (Théorème 2.3) décrivant la transformée stricte deC1(D) sur
la résolution minimaleX de la singularité minimale(S,0), pourD dans un ouvert dense de la Grassmannie
G(N − 2,N) des(N − 2) plans deCN .

Les résultats clefs de cette Note sont démontrés au paragraphe 3 :
Soit (S,0) une singularitéminimalede surface normale plongée dans(CN,0) et π :X→ (S,0) sa résolution

minimale, que l’on peut écrire comme une compositionπ = π1 ◦ · · · ◦ πr d’éclatements de points. Alorsπ est une
résolutionminimaledes singularités de la courbe polaire générique.

En outre la courbe polaire génériqueC1(D) a toutes ses branches de multiplicité 1 ou 2, et en particulier pla
Enfin, la projection deC1(D) sur le discriminant∆pD préserve le contact entre les branches, c’est-à-dire qu’

sont séparées au bout du même nombre d’éclatements de points.
Avec ces résultats, et le théorème de Spivakovsky, il est facile d’obtenir pour chaque graphe de résoΓ

d’une singularité minimale, la classe d’équisingularité du discriminant générique∆S,0 comme cela est expliqué a
paragraphe 4, où l’on donne aussi des exemples.

0. Introduction

This Note is organized as follows: in Section 1 we recall the definitions of polar curves, discriminan
a remarkable property of transversality of Briançon–Henry (Theorem 1.2). For minimal surface singular
theorem of Spivakovsky describes the behavior of the generic polar curve (cf. Section 2). We use this the
Section 3 to prove lemmas relating on the one hand the resolution of the generic polar curve to the reso
a minimal surface singularity, and on the other hand, polar curves and discriminants. Gathering these res
main theorem in Section 4 provides a combinatorial way to describe the discriminant.

1. Polar curves and discriminants

Let (S,0) be a normal complex surface singularity(S,0), embedded in(CN,0): for any(N − 2)-dimensional
vector subspaceD of CN , we consider a linear projectionCN → C2 with kernelD and denote bypD : (S,0)→
(C2,0), the restriction of this projection to(S,0).

Restricting ourselves to theD such thatpD is finite, and considering a small representativeS of the germ(S,0),
we define, as in [9], (2.2.2), thepolar curveC1(D) of the germ(S,0) for the directionD, as the closure inS of
the critical locus of the restriction ofpD to S \ {0}. As explained in loc. cit., it makes sense to say that for
open dense subset of the Grassmann manifoldG(N − 2,N) of (N − 2)-planes inCN , the space curvesC1(D) are
equisingularin terms of strong simultaneous resolutions.

Then we define thediscriminant∆pD as (the germ at 0 of) the reduced analytic curve of(C2,0) image ofC1(D)

by the finite morphismpD .
Again, one may show that, for a generic choice ofD, the discriminants obtained areequisingular germs of plan

curves, but we will need a much more precise result, that demands another definition (cf. [3], IV.3):

Definition 1.1. Let (X,0)⊂ (CN,0) be a germ of reduced curve. Then a linear projectionp :CN → C2 will be
said to begenericwith respect to(X,0) if the kernel ofp does not contain any limit of bisecants toX (cf. [3] for
an explicit description of the coneC5(X,0) formed by the limits at 0 of bisecants toX).

We now state the following transversality result (proved for curves on surfaces ofC3 in [4], Theorem 3.12 and
in general as the “lemme-clé” in [11], V, (1.2.2)):

Theorem 1.2.Let pD : (S,0)→ (C2,0) be as above, andC1(D) ⊂ (S,0)⊂ (CN,0) be the corresponding pola
curve. Then there is an open dense subsetU ofG(N − 2,N) such that forD ∈ U the restriction ofp to C1(D) is
generic in the sense of Definition1.1.
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Definition 1.3.For allD in the open subsetU of Theorem 1.2, the discriminant∆pD are equisingular in the sens
of the well-known equisingularity theory for germs of plane curves (cf., e.g., the account at the beginning
we will call this equisingularity class thegeneric discriminantof (S,0).

2. Polar curves for minimal singularities of surface after Spivakovsky

We first recall how one may define a minimal singularity in the case of normal surfaces (cf. [10], II.2):

Definition 2.1.A normal surface singularity(S,0) is said to beminimal if it is rational with reduced fundamenta
cycle (see [1] for these latter notions).

Letπ : (X,E)→ (S,0) be the minimal resolution of the singularity(S,0), whereE = π−1(0) is the exceptiona
divisor, with componentsLi . A cyclewill be by definition a divisor with support onE, i.e., a linear combination∑
aiLi with ai ∈ Z (or ai ∈ Q for a Q-cycle).
Considering the dual graphΓ associated to the exceptional divisorE (cf. [10], I.1) in which each componen

Lx gives a vertexx and two vertices are connected if, and only if, the corresponding components interse
minimal singularities have the following easy characterization (cf. loc. cit. II.2):

Lemma 2.2.LetΓ be as above the dual graph associated to the minimal resolution of a normal surface sing
(S,0). For each vertexx ∈ Γ , one defines its weightw(x) := −L2

x (self-intersection of the correspondin
componentLx ) and its valenceγ (x), which is the number of vertices connected tox. Then(S,0) is minimal
if, and only if,Γ is a tree and for allx ∈ Γ , Lx  P1

C
andw(x)� γ (x).

To two verticesx, y ∈ Γ (which is a tree), we associate the shortest chain inΓ connecting them, which w
denote by[x, y]. Thedistanced(x, y) is by definition the number of edges on[x, y].

In [10], III.5, Spivakovsky further introduces the following numbersx associated to each vertexx ∈ Γ . If
Z.Lx < 0 (where. denotes the intersection number andZ = ∑

x∈Γ Lx the reduced fundamental cycle), i.e.,
w(x) > γ (x) put sx := 1 (andx is said to be non-Tyurina). Otherwise (i.e., ifw(x) = γ (x)), x is said to be a
Tyurina vertex; then denote∆ the Tyurina component ofΓ containingx (i.e., the maximal connected subgraph
Γ containing only Tyurina vertices), and putsx := d(x,Γ \∆)+ 1.

Let x, y be two adjacent vertices: the edge (x, y) in Γ is called acentral arcif sx = sy . A vertexx is called a
central vertexif there are at least two verticesy adjacent tox such thatsy = sx − 1 (cf. [10]).

Eventually, we define the followingQ-cycleZΩ on the minimal resolutionX of (S,0) by:

ZΩ =
∑

x∈Γ
sxLx −ZK, (1)

whereΓ is the dual graph of the resolution, andZK is the numerically canonicalQ-cycle.1

One may now quote the important Theorem 5.4 in [10] in the following way2 (in loc. cit. it is used to compar
the minimal resolution with the resolution of the Nash transform):

Theorem 2.3.Let (S,0) be aminimal normal surface singularity. There is an open dense subsetU ′ of the open
setU of Theorem1.2, such that for allD ∈U ′ the strict transformC′

1(D) ofC1(D) onX:

(a) is a multi-germ of smooth curves intersecting each componentLx ofE transversally in exactly−ZΩ.Lx points;

1 Uniquely defined by the condition that for allx ∈ Γ , ZK.Lx = −2−L2
x since the intersection product onE is negative-definite.

2 See also the account in [8], (7.4); just beware that one term is missing in the formula givingmx := −ZΩ.Lx there.



198 R. Bondil / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 195–200

ce.

s is

non-
rtainly
ents

nches of
re

al

d
tral arc

r.

ne
ealt

generic

r of
p

(b) goes through the point of intersection ofLx andLy if and only ifsx = sy ( point corresponding to acentral arc
of the graph). Furthermore, the curvesC′

1(D), withD ∈ U ′ do not share other common points(base points)
and these base points are simple, i.e., the curvesC′

1(D) are separated when one blows up these points on

3. From polar curves to discriminants, key lemmas

Lemma 3.1.Let (S,0) be aminimalnormal surface singularity, embedded inCN andπ :X→ (S,0) its minimal
resolution, which is a compositionπ1 ◦ · · · ◦ πr of point blow-ups. We claim that this composition of blow-up
also the minimal resolution of the generic polar curveC1(D) for D ∈U ′ as in Theorem2.3.

Proof. The fact thatπ is a composition of point blow-ups is general for rational surface singularities (for a
cohomological proof in the case of minimal singularities, see [2], 5.9). Conclusion (a) in Theorem 2.3 ce
gives thatπ is a resolution ofC1(D). We prove that this resolution is minimal: among the exceptional compon
in X obtained by the last point blow-up, there is a componentLx corresponding either to a central vertex ofΓ or
to the boundary of a central arc.

If Lx corresponds to a central vertex, one computes from (1) and Theorem 2.3(a), the number of bra
C′

1(D) intersectingLx , i.e.,−ZΩ.Lx = −(∑ sy + (sx + 1)L2
x + 2). By the definition of a central vertex (befo

Theorem 2.3), this must be at least two, which proves that these branches are not separated beforeLx is obtained.
If Lx is the boundary of a central arc, letLy be the other boundary: then bothLx andLy appear as exception

components of the last blow-upπr :X→ Sr−1 at 0r−1. Now, the strict transform ofC1(D) at the point 0r−1 can
not be smooth. Indeed, by an argument in [6], 1.1, if it were smooth, then its strict transformC′

1(D) onX, smooth
surface, would go through a smooth point of the exceptional divisor.✷
Lemma 3.2.For D ∈ U ′ as in Theorem2.3, the polar curveC1(D) on (S,0) has only smooth branches an
branches of multiplicity two, the latter being exactly those for which the strict transform goes through a cen
as in(b) of Theorem2.3.

Proof. Let the notation be the same as in Theorem 2.3. Since(S,0) is a minimal singularity, the cycle onX defined
by the maximal ideal is reduced.

Hence by the projection formula for intersections, for any branchC of the generic polar curveC1(D), the
multiplicity of C at 0 is the intersection multiplicity of its strict transformC′ with the reduced exceptional diviso

Then the description of the strict transform in Theorem 2.3 gives the conclusion.✷
Corollary 3.3. Take the chain of point blow-ups over(CN,0) that gives the minimal resolution of(C1(D),0) for
D ∈ U ′. Then, performing over(C2,0) the “same” succession of blow-ups(this makes sense because of footnote3),
we get the minimal resolution of the plane curve∆pD = pD(C1(D)).

Proof. Since, by Lemma 3.2, the multiplicity of the branches ofC1(D) is at most two, these branches are pla
curves and so are equisingular to theirgenericprojection bypD (here we use Theorem 1.2): so we have d
with the branches. Further, by another result of Teissier’s (see [11], Chapter I, (6.2.1) and remark p. 354) a
projection is bi-Lipschitz, which implies that it preserves the contact between branches.3 ✷

3 Indeed, the contact between two branchesγ1(t) andγ2(t) which are both of multiplicity one or two, that we define as the numbe
blow-ups to separate them, may be read from the order int of the differenceγ1(t)− γ2(t), which is a bi-lipschitz invariant. Since we blow-u
always in the “same chart” these blow-ups actually dominate the blow-ups of the plane, as claimed in the corollary.
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4. Statement of the main result

Gathering the results from Lemma 3.1 to Corollary 3.3, we obtain:

Theorem 4.1.Let (S,0) be a minimal normal surface singularity, embedded inCN andπ :X→ (S,0) its minimal
resolution, which is a compositionπ1 ◦ · · · ◦ πr of point blow-ups inCN . Let∆S,0 be the generic discriminant o
(S,0) (cf. Definition1.3). Then, performing over(C2,0) the “same” succession of blow-ups(cf. footnote3), we
get the minimal resolution of the plane curve∆S,0.

This result, together with Theorem 2.3 gives an easy way to get a combinatorial description of(∆S,0,0):

Notation 4.2. (i) We denote by∆An the generic discriminant of theAn surface singularity, which is th
equisingularity class of the plane curve defined byx2 + yn+1 = 0.

(ii) We denote byδn the generic discriminant of the singularity which is a cone over a rational normal cur
degreen in Pn

C
: it is defined by 2n− 2 distinct lines through the origin.

The assertion in (ii) follows from the fact thatC1(D) is the cone over the critical locus of the projection fro
the rational normal curve onto a line, which has degree 2n− 2 by the Hurwitz formula.

We need to introduce several subsets of a dual graphΓ : we denote byΓNT = {x1, . . . , xn} the set of Non-Tyurina
vertices inΓ , which are here thex ∈ Γ such thatw(x) > γ (x) (notation as in Lemma 2.2).

We denote byCv and Ca the set of central vertices and central arcs respectively inΓ (cf. def. before
Theorem 2.3).

Corollary 4.3. From Theorem2.3 we know that the components of the strict transformC1(D)
′ of C1(D) on the

resolutionX of (S,0) go through components corresponding to elements ofΓNT ∪ Ca ∪ Cv , and we also know th
number of branches ofC1(D)

′ on each of these components, and their multiplicity by Lemma3.2.
From Theorem4.1 we know the contact between the corresponding branches ofC1(D) (or ∆S,0): the contact

between two branches whose strict transforms lie respectively on a componentLx and a componentLy equals
1 + N , whereN is the number of blow-ups necessary so thatLx and Ly are no longer in the same Tyurin
component of the corresponding(SN ,0N) singularity, with the further requirement that if, say, the first bran
actually goes through a central arcLx ∩Lx ′ , the numberN corresponds to the number of blow-ups so thatbothx
andx ′ are no longer in the same Tyurina component asy.

From this, we get a precise description of∆S,0: eachxi ∈ ΓNT contributes with aδxi := δw(xi)−γ (xi) (cf. 4.2(ii)),
i.e., 2(w(xi)− γ (xi))− 2 lines, and the contact between theseδxi and other branches of the discriminant is o
For the contribution of the central elements, we first compute the number of branches on each compone
Theorem 2.3 and one easily shows (using 3.2) that they contribute as∆An -curves and we use Theorem 4.1
determine then and the contacts as in the following examples:

Example 1.Consider(S,0)with the graphΓ as on Fig. 1, where the• denote Tyurina vertices (withw(x)= γ (x)),
andΓNT = {x1, . . . , x4} with the weights indicated on the graph. Remark that as a general ruleδxi = ∅ when
w(xi)= γ (xi)+ 1, hence here onlyx1 actually gives aδx1equal to four lines.

(i) In the first Tyurina component(bounded byx1, x2, x4) there is a central vertex and a central arc, wh
respectively give a∆A5 and a∆A4 curve.

After two blow-ups the boundaries of the central arc and the central vertex are in distinct Tyurina comp
hence the contact between the∆A5 and∆A4 is three.

(ii) In the second Tyurina component(bounded byx2, x3), there is a central vertex: this gives a∆A3 which has
contact 1 with the others∆Ai obtained.
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Fig. 1. GraphΓ as in Example 1.

Fig. 1. Graphe deΓ , comme dans
l’Exemple 1.

Fig. 2. GraphΓ as in Example 2.

Fig. 2. Graphe deΓ , comme dans l’Exemple 2.

Hence, using coordinates, we may give as representative of the equisingularity class of∆S,0: (x4+y4)(x2+y6) ·
(x2 + y5)(y2 + x4)= 0.

Example 2.If (S,0) is a cyclic-quotient singularity, i.e., has a graphΓ as on Fig. 2, we may orderΓNT = {x1<

x2< · · ·< xn} and each central elementx (central vertex or central arc) lies in a unique[xi, xi+1] and is easily see
to contribute to∆S,0 by a∆x :=∆Al([xi ,xi+1]) , wherel[xi, xi+1] is the number of vertices on the chain[xi, xi+1]; the
contact between each∆x is one (i.e., their tangent cones have no common components). Hereδxi is 2w(xi)−4 lines
for i = 1 andi = n, and 2w(xi)− 6 for 1< i < n, all this lines being distinct. So, with∆An as in Notation 4.2(i):
∆S,0 = δx1 ∪∆Al[x1,x2] ∪ δx2 ∪ · · · ∪∆Al[xn−1,xn] ∪ δxn , with contact one between all the curves in the “∪”.

Remark 1. In particular, the equisingularity type of(∆S,0,0) depends only on the resolution graph of(S,0), i.e.,
of the topological type of(S,0), a fact which is known to be wrong for other normal surface singularities as s
in [5].

Remark 2 (Added on proofs). The contribution of the components of the tangent cone (xi ∈ ΓNT ) asδxi in the
generic discriminant of(S,0) may be seen directly (i.e., without using Theorem 2.3) from the deformatio
(S,0) on its tangent cone. We hope to come back to this in a future paper.
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