

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 337 (2003) 165-170

Partial Differential Equations

On the Γ -convergence of matrix fields related to the adjugate Jacobian

Carlo Sbordone

Dipartimento di Matematica ed Applicazioni "R. Caccioppoli", via Cintia, 80126 Napoli, Italy Received and accepted 13 May 2003 Presented by Haïm Brezis

Abstract

Adjugate Jacobians of mappings $f_j : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ can be represented in terms of Jacobian matrices: adj $Df_j = \mathcal{A}_j(x)Df_j^t$, for j = 1, 2, ..., by mean of symmetric matrix fields $\mathcal{A}_j(x)$ with det $\mathcal{A}_j(x) = 1$ a.e. Under suitable conditions, we prove that $Df_j \to Df$ weakly in $L^1_{loc}(\Omega; \mathbb{R}^2)$ if and only if $\mathcal{A}_j(x) \Gamma$ -converges to a matrix $\mathcal{A}(x)$ with det $\mathcal{A}(x) = 1$ satisfying adj $Df = \mathcal{A}(x)Df^t$. To cite this article: C. Sbordone, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur la Γ -convergence de champs de matrices relatifs au jacobien adjugué. La transposée des cofacteurs de la matrice jacobienne de l'application $f_j : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ peut être exprimée en fonction de la matrice jacobienne : adj $Df_j = \mathcal{A}_j(x)Df_j^t$, pour j = 1, 2, ..., en utilisant une matrice symétrique $\mathcal{A}_j(x)$ telle que det $\mathcal{A}_j(x) = 1$ p.p. Sous des hypothèses appropriées, nous prouvons que Df_j converge faiblement vers Df dans $L^1_{loc}(\Omega; \mathbb{R}^2)$ si et seulement si $\mathcal{A}_j(x)$ Γ -converge vers une matrice $\mathcal{A}(x)$ telle que det $\mathcal{A}(x) = 1$ p.p. et vérifiant adj $Df = \mathcal{A}(x)Df^t$. Pour citer cet article : C. Sbordone, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Pour toute matrice $D \in \mathbb{R}^{2 \times 2}$ on dénote par adj D la matrice transposée des cofacteurs. Si $K \ge 1$ et D est K-quasiconforme, c'est-à-dire $||D||^2 \le K$ det D, alors il existe une unique matrice symétrique $\mathcal{A} \in \mathbb{R}^{2 \times 2}$ verifiant :

$$\frac{|\xi|^2}{K} \leqslant \langle \mathcal{A}\xi, \xi \rangle \leqslant K |\xi|^2, \quad \text{et} \quad \det \mathcal{A} = 1$$

telle que adj $D = AD^t$.

Nous appelons A le tenseur de distorsion inverse de D.

1631-073X/\$ – see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

doi:10.1016/S1631-073X(03)00280-2

E-mail address: sbordone@unina.it (C. Sbordone).

Pour une fonction measurable à valeurs matricielles D = D(x), *K*-quasiconforme pour $x \in \Omega \subset \mathbb{R}^2$ p.p., nous prouvons que si $D_j \rightharpoonup D$ dans $L^1_{loc}(\Omega, \mathbb{R}^2)$ et Curl $D_j = 0$, alors les tenseurs inverses de distorsion $\mathcal{A}(x, D_j)$ de $D_j(x)$ satisfont $\mathcal{A}(x, D_j) \xrightarrow{G} \mathcal{A}(x, D)$ au sens de De Giorgi–Spagnolo (see [7,10]). En remplaçant Curl $D_j = 0$ par Div $D_j = 0$ nous trouvons :

$$\mathcal{A}(x, D_j)^{-1} \xrightarrow{G} \mathcal{A}(x, D)^{-1}$$

Une généralisation aux matrices de distorsion K(x) est présentée.

1. The G-convergence in the uniformly elliptic case

For any matrix $D \in \mathbb{R}^{2 \times 2}$, let adj D be its adjugate matrix, i.e., the transpose of its cofactors, defined by the identity

$$D \operatorname{adj} D = (\det D)\mathbf{I}.$$
⁽¹⁾

where **I** is the unit matrix.

We note that if det D > 0, then there exists a symmetric matrix $\mathcal{A} = \mathcal{A}(D)$ with det $\mathcal{A} = 1$ such that

$$\operatorname{adj} D = \mathcal{A}(D)D^{t},\tag{2}$$

namely

$$\mathcal{A}(D) = \left[\frac{D^t D}{\det D}\right]^{-1}.$$
(3)

In the following we supply $\mathbb{R}^{2\times 2}$ with the operator norm $||D|| = \max_{|\xi|=1} |D\xi|$ or, sometimes, with the Hilbert–Schmidt norm, $|D| = [\operatorname{Tr}(D^t D)]^{1/2}$ where $\operatorname{Tr}(C) = \sum_{i=1}^{2} c_{ii}$ if $C = (c_{ij})$.

The natural ellipticity bounds we will consider on \overline{A} are:

$$\frac{|\xi|^2}{K} \leqslant \langle \mathcal{A}\xi, \xi \rangle \leqslant K |\xi|^2 \tag{4}$$

for a $K \ge 1$, and we prove that (4) holds true for $\mathcal{A} = \mathcal{A}(D)$ if and only if D is a K-quasiconformal matrix, i.e.,

$$\|D\|^2 \leqslant K \det D. \tag{5}$$

Let us first introduce the following sets of matrices:

$$\mathcal{Q}_{2}(K) = \left\{ D \in \mathbb{R}^{2 \times 2} \colon \|D\|^{2} \leqslant K \det D \right\},\$$
$$\mathcal{E}_{2}(K) = \left\{ \mathcal{A} \in \mathbb{R}^{2 \times 2} \colon \mathcal{A}^{t} = \mathcal{A}, \ \frac{\mathbf{I}}{K} \leqslant \mathcal{A} \leqslant K\mathbf{I}, \ \det \mathcal{A} = 1 \right\}.$$

The two sets are related via the mapping $D \to \mathcal{A}(D)$, according to the following:

Proposition 1.1. If $D \in \mathbb{R}^{2 \times 2}$, det D > 0 and $\mathcal{A}(D)$ is defined by (3), then:

$$D \in \mathcal{Q}_2(K)$$
 if and only if $\mathcal{A} \in \mathcal{E}_2(K)$. (6)

Moreover $\mathcal{A}(D)$ is the unique matrix in $\mathcal{E}_2(K)$ such that $\operatorname{adj} D = \mathcal{A}(D)D^t$.

Proof. First of all it is easy to check that a matrix *D* belongs to $Q_2(K)$ if and only if:

$$|D|^2 \leqslant \left(K + \frac{1}{K}\right) \det D. \tag{7}$$

166

Now for $D \in Q_2(K)$ with det D > 0, consider the inverse matrix of $\mathcal{A}, \mathcal{G} = \frac{D^t D}{\det D}$. Then, obviously det $\mathcal{G} = 1$ and the distortion inequality (7) is equivalent to $Tr(\mathcal{G}) \leq K + \frac{1}{K}$. Let λ and $\frac{1}{\lambda}$ be the eigenvalues of \mathcal{G} . Then the last inequality means that $\lambda + \frac{1}{\lambda} \leq K + \frac{1}{K}$; hence $\frac{1}{K} \leq \lambda \leq K$ and so $\mathcal{A}(D)$ belongs to $\mathcal{E}_2(K)$. Notice that, if $\mathcal{A} \in \mathcal{E}_2(K)$ and $D \in \mathbb{R}^{2 \times 2}$ with positive determinant are related by the identity (2) then we deduce:

$$\operatorname{Tr}(D^{t}D) = \operatorname{Tr}\left(\mathcal{A}^{-1}(\operatorname{adj} D)D\right) = \operatorname{Tr}\left(\mathcal{A}^{-1}(\det D)\mathbf{I}\right) = \operatorname{Tr}\left(\mathcal{A}^{-1}\right)\det D \leqslant \left(K + \frac{1}{K}\right)\det D,$$

since $\operatorname{Tr}(\mathcal{A}^{-1}) = \operatorname{Tr}(\mathcal{A}) \leq (K + \frac{1}{K}).$

To prove the last statement, observe that $\mathcal{A}D^t = (\det D)D^{-1}[D^t]^{-1}D^t = (\det D)D^{-1} = \operatorname{adi} D.$

Now we are interested in variable matrices $D = D(x) \in Q_2(K)$, for a.e. $x \in \Omega$ where $\Omega \subset \mathbb{R}^2$ is a simply connected bounded domain. If D(x) is measurable then the pointwise distortion tensor $\mathcal{A}(x) = \mathcal{A}(x, D(x))$, associated to adjD(x), i.e., satisfying

$$\operatorname{adj} D(x) = \mathcal{A}(x) D(x)^{t}$$
(8)

is a measurable matrix field which is uniformly elliptic with det A(x) = 1 a.e. An important point here is that a converse statement is also true. By the so-called measurable Riemann mapping theorem, given any measurable symmetric matrix field $\mathcal{A}(x)$ in $\Omega \subset \mathbb{R}^2$ such that $\mathcal{A}(x) \in \mathcal{E}_2(K)$ a.e. $x \in \Omega$ we can find $D \in L^2(\Omega, \mathbb{R}^{2 \times 2})$ such that $D(x) \in Q_2(K)$ a.e., Curl D(x) = 0, for which (8) holds. A natural question is to see how does the *pointwise inverse distortion tensor* $\mathcal{A} = \mathcal{A}(x, D)$ change with D(x).

We are particularly concerned with the continuity properties of the operator, $D \in L^2(\Omega, \mathbb{R}^2) \to \mathcal{A}(x, D) \in$ $L^{\infty}(\Omega, \mathbb{R}^2)$, when we supply $L^2(\Omega, \mathbb{R}^2)$ with the weak topology. If D_j converges weakly to D, this does not guarantee convergence of matrices $\mathcal{A}(x, D_i)$ to $\mathcal{A}(x, D)$ in any familiar sense. Note that the condition det $\mathcal{A}(x, D_j) = 1$ is not necessarily preserved under the weak* convergence of $\mathcal{A}(x, D_j)$. The relevant concept to be considered here is that of G-convergence, at least in the case $\operatorname{Curl} D_i = 0$ a.e. in Ω (see also related ideas in [1–3,10]). Let $A_j = A_j(x)$ be a sequence of measurable matrix valued functions $A_j: \Omega \to \mathbb{R}^{2 \times 2}$ satisfying the ellipticity condition:

$$\frac{|\xi|^2}{K} \leqslant \left\langle A_j(x)\xi,\xi \right\rangle \leqslant K|\xi|^2 \tag{9}$$

for a.e. $x \in \Omega$ and $\forall \xi \in \mathbb{R}^2$, with $K \ge 1$. Assume that

$$\det A_j(x) = 1 \quad \text{a.e. } x \in \Omega. \tag{10}$$

We are ready for the definition of G-convergence of A_i to a matrix valued function A = A(x) satisfying (9) and (10).

Definition 1.2. The sequence A_j *G*-converges to *A* if and only if, for $D_j \in L^2_{loc}(\Omega, \mathbb{R}^{2 \times 2})$ satisfying:

 $\operatorname{Div}(A_j(x)D_j^t(x)) = 0$, and $\operatorname{Curl} D_j(x) = 0$,

the conditions, (i) $D_i(x) \rightarrow D(x)$; and (ii) $A_i(x)D_i^t(x) \rightarrow A(x)D^t(x)$, are equivalent each other.

Here, the Div operator is defined as

$$\left(\operatorname{Div} M(x)\right)_{i} = \sum_{k=1}^{2} \frac{\partial M_{ki}(x)}{\partial x_{k}}, \quad i = 1, 2, \ M \in L^{2}_{\operatorname{loc}}(\Omega, \mathbb{R}^{2 \times 2}).$$

We have the following:

167

Theorem 1.3. Let Ω be a simply connected bounded open set in \mathbb{R}^2 . Let D_j belong to $L^2(\Omega, \mathbb{R}^2)$ and $D_j(x) \in \mathcal{Q}_2(K)$ a.e. $(K \ge 1)$. Assume

$$D_j \rightarrow D \neq 0$$
 weakly in $L^2(\Omega, \mathbb{R}^{2 \times 2})$. (11)

)

Then (i) and (ii) holds true:

- (i) if $\operatorname{Curl} D_j = 0$, then $D(x) \in \mathcal{Q}_2(K)$ a.e. and $\mathcal{A}(x, D_j) \xrightarrow{G} \mathcal{A}(x, D)$;
- (ii) if Div $D_j = 0$, then $D(x) \in \mathcal{Q}_2(K)$ a.e. and $\mathcal{A}(x, D_j)^{-1} \xrightarrow{G} \mathcal{A}(x, D)^{-1}$.

Remark 1. Roughly speaking, in case (i) Theorem 1.3 has the following meaning: if $D_j = Df_j$ then, by a well known property of the adjugate Jacobian, $Div(adj Df_j) = 0$, and so the mappings f_j solve their own second order elliptic system $Div(\mathcal{A}(x, Df_j)Df_j^t) = 0$. Actually, the mappings f_j behave as "principal solutions" to such a system, their convergence governing the convergence of all other sequences g_j of solutions.

Proof of Theorem 1.3. (i) Let f_i , $f \in W^{1,2}(\Omega, \mathbb{R}^2)$ satisfy $Df_i = D_i$, Df = D. By our assumption:

$$Df_j \rightarrow Df$$
 (12)

we obtain, via a classical result of Reshetnyak [8,4]:

det $Df_j \rightarrow \det Df$ weakly in $L^1_{loc}(\Omega)$

and so $Df(x) \in Q_2(K)$, a.e. in Ω in virtue of the lower semicontinuity of the norm. By the *G*-compactness theorem [10] (see also [5] for more general cases of degenerate elliptic equations) we may assume $\mathcal{A}(x, Df_j) \xrightarrow{G} A_0(x)$. Since $\text{Div}(\mathcal{A}(x, Df_j)Df_j^t) = \text{Div}(\text{adj } Df_j) = 0$ by definition of *G*-convergence, we have $\mathcal{A}(x, Df_j)Df_j^t \rightarrow A_0(x)Df^t$. But (12) and the definition of $\mathcal{A}(x, Df_j)$ imply $\mathcal{A}(x, Df_j)Df_j^t \rightarrow \mathcal{A}(x, Df)Df^t$ and so $\mathcal{A}(x, Df)Df^t = A_0(x)Df^t$. Since $Df^t \neq 0$ a.e., we deduce $\mathcal{A}(x, Df) = A_0(x)$.

(ii) Taking into account that Ω is a simply connected open set in \mathbb{R}^2 , the condition $\text{Div } D_j = 0$ implies $D_j = \text{adj } Dg_j$ for some $g_j \in W^{1,2}(\Omega; \mathbb{R}^2)$. Hence, by the definition of $\mathcal{A}(x, Dg_j), D_j = \mathcal{A}(x, Dg_j)D^tg_j$ which, of course can be rewritten as: $Dg_j = \mathcal{A}(x, Dg_j)^{-1}D_j^t$. Now, the hypothesis $D_j \rightarrow D$ in $L^2(\Omega; \mathbb{R}^{2\times 2})$ is equivalent

to $Dg_j \rightarrow Dg$ and so, by part (i) we have $D(x) \in Q_2(K)$ a.e. in Ω , and $\mathcal{A}(x, Dg_j) \xrightarrow{G} \mathcal{A}(x, Dg)$. Note that

$$\mathcal{A}(x, Dg_j) = \mathcal{A}(x, D_j)^{-1}.$$
(13)

Actually (13) is a consequence of the equivalence

$$C = \operatorname{adj} D \quad \Leftrightarrow \quad D = \operatorname{adj} C$$

which holds for all 2×2 matrices $C, D \in \mathbb{R}^{2 \times 2}$. \Box

2. The case of mappings with unbounded distortion

For the purpose of this section we adopt the following variant of De Giorgi's notion of Γ -convergence. Let A_i , A be symmetric matrix fields satisfying:

$$0 \leqslant \left\langle A_j(x)\xi,\xi \right\rangle \leqslant K_j(x)|\xi|^2, \tag{14}$$

$$0 \leqslant \langle A(x)\xi,\xi \rangle \leqslant K(x)|\xi|^2, \tag{15}$$

where $K_i, K \in L^1(\Omega)$.

Definition 2.1. We say that $A_j \ \Gamma$ -converges to $A, (A_j \xrightarrow{\Gamma} A)$, if the following two conditions are verified:

(i) the inequality

$$\int_{\Omega} \langle A(x) \nabla u, \nabla u \rangle \mathrm{d}x \leqslant \liminf_{j \to \infty} \int_{\Omega} \langle A_j(x) \nabla u_j, \nabla u_j \rangle \mathrm{d}x$$

holds whenever $u_i, u \in \text{Lip}(\Omega)$ and $u_i \to u$ in $L^1(\Omega)$.

(ii) For every $v \in \text{Lip}(\Omega)$ there exist a sequence $v_j \in \text{Lip}(\Omega)$ converging to v in $L^1(\Omega)$ such that $v_j - v \in C_0^0(\Omega)$ and

$$\int_{\Omega} \langle A(x)\nabla v, \nabla v \rangle dx = \lim_{j \to \infty} \int_{\Omega} \langle A_j(x)\nabla v_j, \nabla v_j \rangle dx.$$

Note that by general properties of Γ -convergence, (2.1)(i) and (2.1)(ii) remain true if we replace Ω by any of its open subsets. It is worth pointing out here that if A_j satisfy the ellipticity conditions (9) the two definitions of Γ and G convergence agree (see, e.g., [6]).

We report here a compactness result concerning Γ -convergence [6].

Theorem 2.2. Let A_j be a sequence of symmetric 2×2 matrices satisfying (14) with $K_j \rightarrow K$ weakly in $L^1(\Omega)$. Then, there exists a subsequence $A_{jr} \Gamma$ -converging to a symmetric matrix A satisfying (15).

Let us now consider a sequence $f_j = (f_j^1, f_j^2) \in W^{1,1}(\Omega, \mathbb{R}^2)$ of non constant mappings of *finite distortion*, i.e., satisfying the *distortion inequality*:

$$\|Df_j(x)\|^2 \leqslant K_j(x)J(x,f_j) \quad \text{a.e. } x \in \Omega$$
(16)

under the following assumptions:

there exist
$$\lambda_0 \ge 1, c_0 > 0$$
 such that $\int_{\Omega} e^{\lambda_0 K_j(x)} dx \le c_0$ for $j = 1, 2, \dots,$ (17)

$$K_j \rightarrow K$$
 weakly in $L^1(\Omega)$, (18)

$$f_j \rightarrow f = (f^1, f^2)$$
 weakly in $W^{1,1}(\Omega, \mathbb{R}^2)$, (19)

there exists
$$c_1 > 0$$
 such that $\int_{\Omega} J(x, f_j) dx \leq c_1$ for $j = 1, 2, ...$ (20)

Note that we do not assume $f_j \in W^{1,2}(\Omega, \mathbb{R}^2)$. Actually (16), (17) and (20) imply, via Hölder inequality, only $Df_j \in L^2 \lg^{-1} L(\Omega)$.

Set now $A_j(x) = A(x, Df_j)$ then, by our previous results, A_j enjoy the ellipticity bounds,

$$\frac{|\xi|^2}{K_j(x)} \leqslant \left\langle \mathcal{A}_j(x)\xi, \xi \right\rangle \leqslant K_j(x)|\xi|^2, \tag{21}$$

for almost every $x \in \Omega$ and all $\xi \in \mathbb{R}^2$.

Theorem 2.3. Under the above assumptions (16)–(20), the limit mapping f is either constant or, if not, has finite distortion K(x) and

$$\int_{\Omega} \langle \mathcal{A}_j(x) \nabla v, \nabla v \rangle \mathrm{d}x \xrightarrow{\Gamma} \int_{\Omega} \langle \mathcal{A}(x) \nabla v, \nabla v \rangle \mathrm{d}x,$$
(22)

where $\mathcal{A}(x) = \mathcal{A}(x, Df)$.

We emphasize that, under our general assumptions (17), (21) of degenerate ellipticity on A_j , no compactness theorem is available with respect to G-convergence.

This is why we are invoking Γ -convergence as a tool, since it enjoys the above mentioned compactness property (Theorem 2.2).

We conclude our paper with the following:

Corollary 1. Under the assumptions of Theorem 2.3, we have: $A_j = A(x, Df_j) \xrightarrow{G} A = A(x, Df)$ in the following sense: if $v_j \in W^{1,1}_{loc}(\Omega_1)$ are finite energy solutions to the equations

 $\operatorname{div}(\mathcal{A}_i(x)\nabla v_i) = 0 \quad in \ \Omega_1 \subset \Omega,$

 $(\int_{\Omega_1} \langle A_j(x) \nabla v_j, \nabla v_j \rangle \leq c_1, \ j = 1, 2, \ldots)$ and

$$\nabla v_i
ightarrow \nabla v$$
 weakly in $L^1(\Omega_1, \mathbb{R}^2)$,

then

 $\mathcal{A}_j \nabla v_j \rightharpoonup \mathcal{A} \nabla v \quad weakly \text{ in } L^1(\Omega_1, \mathbb{R}^2)$

and v is a finite energy solution in Ω_1 to the equation

$$\operatorname{div}(\mathcal{A}(x)\nabla v) = 0.$$

The proof of Theorem 2.3 will appear in [9].

Acknowledgements

Research supported by MIUR and GNAMPA-INdAM.

References

- [1] C. Capone, Quasiharmonic fields and Beltrami operators, Comment. Math. Univ. Carolinae 43 (2) (2002) 363-377.
- [2] R. De Arcangelis, P. Donato, On the convergence of Laplace–Beltrami operators associated to quasiregular mappings, Studia Math. 86 (3) (1987) 189–204.
- [3] L. D'Onofrio, L. Greco, A counterexample in G-convergence of nondivergence elliptic operators, Preprint, 2003.
- [4] T. Iwaniec, G. Martin, Geometric Function Theory and Non-Linear Analysis, in: Oxford Math. Monographs, Oxford University Press, 2001.
- [5] T. Iwaniec, C. Sbordone, G-convergence of Beltrami operators, in press.
- [6] P. Marcellini, C. Sbordone, An approach to the asymptotic behaviour of elliptic-parabolic operators, J. Math. Pures Appl. (9) 56 (2) (1977) 157–182.
- [7] F. Murat, L. Tartar, H-Convergence. Topics in the Mathematical Modelling of Composite Materials, in: Progr. Nonlinear Differential Equations Appl., Vol. 31, Birkhäuser, Boston, 1997, pp. 21–43.
- [8] Yu.G. Reshetnyak, Mappings of bounded deformations as extremals of Dirichlet type integrals, Sibirsk. Mat. Zh. 9 (1968) 625-666.
- [9] C. Sbordone, On the convergence of the associated matrix to the adjugate Jacobian, 2003, in press.
- [10] S. Spagnolo, Some convergence problems, in: Symposia Mathematica, Vol. XVIII (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974), 1976, pp. 391–398.

170