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Abstract

The moduli space of stable real cubic surfaces is the quotient of real hyperbolic four-space by a discrete, nonarithmetic group.
The volume of the moduli space is:S?’/lOSO in the metric of constant curvaturdl. Each of the five connected components
of the moduli space can be described as the quotient of real hyperbolic four-space by a specific arithmetic group. We compute
the volumes of these componerits.cite thisarticle: D. Allcock et al., C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Surfaces cubiquesréelles et géométrie hyperboliqueréelle. Lespace des modules des surfaces cubiques stables et réelles
est le quotient de I'espace hyperbolique réel de dimension quatre par un groupe non-arithmétique discret. Le volume de I'espact
des modules est 3?/1080 dans la métrique de courbure constante Chacune des composantes connexes de I'espace des
modules peut étre décrite comme le quotient de I'espace hyperbolique réel de dimension quatre par un groupe arithmétiqu
spécifique. Nous calculons le volume des composaR®s. citer cet article: D. Allcock et al., C. R. Acad. Sci. Paris, Ser. |
337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Results

In [2] we showed that the moduli space of stable cubic surfaces is the quotient of complex hyperbolic four-
space by a certain arithmetic group which we described explicitly. The purpose of this Note is to announce a
corresponding result for real cubic surfaces: the moduli space is a quotient of real hyperbolic four-space by an
explicit discrete group. The group, however, is not arithmetic. We also compute the volume of the moduli space in
its metric of curvature-1. Itis 3772/1080= (472/3)(37/1440. (The 472/3 is the ratio of the volume of the unit
4-sphere to its Euler characteristic, which appears in the Gauss—Bonnet theorem.)

By the moduli spac@(§} (resp.MR) we mean the setf (resp.CR) of cubic forms with real coefficients that
define smooth (resp. stable) surfaces, modulo the action 4,&). By smooth we mean that the set of complex
points is smooth, and by stable we mean stable in the sense of geometric invariant theory. In this case, stable
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Fig. 1. Coxeter diagrams for the reflection subgroufysof the PI';. Each describes a polyhedraiy with one facet per atom of the diagram.
The bonds indicate iffnow pairs of facets meet: an absent (resp. single, double, triple) bond represents arfa(rgiepok, 7, %), and a
dashed (resp. heavy) bond represents ultraparallelism (resp. paralletisin 1&%; is the group generated by reflections in the facets gfand
C; is a fundamental domain fd¥ ;.

means that the complex surface has no singularities besides nodes. ThMﬁ)aae five connected components
(see [5]), which we denote kﬂth forj=0,1,...,4.

For each componem[0 of the moduli space we exhibit an arithmetic lattieé’; C PO(4, 1), a unionA ; of
two- and three- dlmen5|onal real hyperbolic subspacédff, and an |som0rph|sm

Mg, = PI\(RH* - 4)) (1)

of real analytic orbifolds. We give two concrete descriptions of &1&, one arithmetic and one geometric. First,
PT is the projective orthogonal group of the integer quadratic fere§ + m1x2 + - - - + max2, wherej of the
m; are 3's and the rest are 1's. Secod;; is, up to a group of order at most two, the Coxeter gréiipdefined
in Fig. 1. More preciselyP I'; is the semidirect product d¥; by the group of diagram automorphisms, which is
either trivial or of order two. Yoshida has treated the case0 in [7].

The points ofA; represent nodal surfaces which are limits of smooth surfaces ofjtypace a surface with
a real node is a limit of two different topological types of real surface, it is natural to glue variou@p@'}rand
Mg‘ ., together by identifying part of\; with part of A ;.. Carrying this out in practice means gluing certain faces
of the polyhedraC; to each other and taking care to deal with the diagram automorphisms. A miracle occurs and
the result of these gluings turns out to be a quotierRldf* in its own right:

Theorem 1. There is a nonarithmetic latticB 'R ¢ PO(4, 1), a unionA of two- and three-dimensional hyperbolic
subspaces d®H*, and an isomorphism
ME = PIR\(RH* - 4)
of real analytic orbifolds. This identification extends to a homeomorpmgh.ﬁ_ PI'R\RH%.
The clue to the nonarithmeticity is thM§ is obtained by gluing together arithmetic orbifolds whose groups

fall into two commensurability classes. In the spirit of Gromov-Piatetski and Shapiro [4], one expects the resulting
group to be non-arithmetic. To prove the nonarithmeticity we use the Galois-conjugation criterion in [3]. Namely,
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Table 1
Type Topology Real lines nfrb(Mg /) Euler char.  VWolume  Fraction (%)
0  RP2+3handles 27 S 1/1920  0.00685 23
1 RPZ2 + 2 handles 15 (S3x S3) xZ/2 1/288 0.04569 131
2 RP2 + 1 handle 7 (Doo X Doo) X Z/2 5/576 0.11423 338
3 RP? - 1/96 0.13708 4054
oXO—0—0
4  RP2US? 3 1/384 0.03427 104

37/1440 0.33813 1000

it happens thaP I'R preserves an integral quadratic form oZ¢x/3] which has signaturét, 1) and whose Galois
conjugate also has signatu¢4, 1). We note thatPI'R is not a Coxeter group, even up to finite index, but it
contains an index two subgroup whose fundamental domain is a union of copies©f tred happens to be a
Coxeter polyhedron.

The homeomorphisMR = PI'R\RH* is not an orbifold isomorphism, but it becomes one if the orbifold
structure onPI"R\RH* is suitably changed. This can be done explicitly enough to compute the orbifold
fundamental grouprf’b(MsR) =7Z/2x(Z%Z/2),andto see théMSR is a bad orbifold in the sense of Thurston.

The theory of Coxeter groups makes it easy to compute the orbifold Euler characterW;ik;I@H“, and hence
the volume of this quotient. Dividing by a factor of two if necessary, we obtain the vqurﬂé“p‘(RH“, which is
the volume oﬂvtf{ . It follows that the hyperbolic volume a? I"'R\RH# is the sum of these volumes. The results
are displayed in Table 1. For eagtwe give the topology of that type of real cubic surface, the number of its real
lines, the orbifold fundamental group M§ ., and the orbifold Euler characteristic and vqumemTj\RH“. Su
and D, denote symmetric and infinite diﬁedral groups. Note that the component corresponding to the simplest
topology has the greatest volume, just over 40% of the total, and the component corresponding to surfaces with the
most real lines has the smallest volume.

2. About the proof

The identification of the components of the moduli space with quotients of real hyperbolic space depends on
the construction of [1,2]. Given a smooth complex cubic surfadet T be the triple cover of projective 3-space
branched alongs, and let(H3(T), o) denote the resulting special Hodge structure, wheiie the symmetry
coming from the branched covering transformation. The period map which assi§rthéoclass of H3(T), o)
defines an isomorphism between the moduli space of stable cubic surfadesa6tH*. Here P I" is the projective
automorphism group of the Hermitian foritx, y) = —xojo + x171 + - - - + x44 on the latticeA = £+1, where
& = Z[¥1). The locusH of CH* representing singular surfaces is the union of the orthogonal complements of
the norm 1 vectors oft. In more detail, the Hodge structure &ff(7'), together with a choice of isomorphism
i:H3(T,Z) — A of Hermitian&-modules determines a complex linedtr = A ®¢ C = C*! which is negative
for h. ThusL is a point of CH*, well defined up to the action @t I".

We call an antilinear involution (“anti-involution”) cEH#* integral if it arises from an anti-involution of. We
write Ko for the set of all pairgL, x) whereL € CH* — H and x is an integral anti-involution that preserves
L. If the surfacesS is defined by an equation with real coefficients, then complex conjugati&s, ..., X4) =
(Xo, ..., X4) acts onH3(T,Z) as an anti-involution with respect to tf&module structure. Ley be the
corresponding integral anti-involutigr «* oi ~1 of CH#. This associates t§ and a choice of a pair(L, x) € Ko,
and defines a period map

MR — PI'\Ko, 2)

which we show is an isomorphism of real analytic orbifolds.
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Another way to look aKj is as a disjoint union of incomplete real hyperbolic manifolds. To see thiRHlét
be the set of fixed points iBH* of x. Then

Ko= ]_[(RH§ - %),
X

wherey varies over the integral anti-involutions 6H*. Now letC be a set of of representatives for the conjugacy
classes of integral anti-involutions &H* under the action oP I". Let PTI, be the centralizer of in PI". Then
the quotient ofKg by PI" is

PI\Ko= [ | Py \(RH} — 3).
xeC

To understand this quotient in detail, we need to classify the integral anti-involytioh€H*, modulo the action
of PI'. One shows that there are just five classes, given by

X (20, - .., z24) = (20, €121, €222, €373, £474), 3

wherej of thee; are—1 and the rest are 1. Itis clear that eacl? I'y; is a subgroup of the projective automorphism
group of theZ-lattice A%/ fixed by x ;, and one can check that it is the full projective isometry group. Computing
the quadratic forms on the*/ leads to the quadratic forms used to describeftlig in (1), soP Iy, = PI';. This

yields (1), whereA; = RHj‘(, N H. We found the Coxeter diagrams by using Vinberg’s algorithm [6].

In order to carry out the gluing process leading to Theorem 1, we computed which points of the Weyl
chambersC; lie in 3(; it turns out thatC; N H is a union of faces ofC;. Then we had to figure out which
faces of theC; andC to glue to each other and how; for this we studied how the valﬁdd§ meet inCH*.

Finally we worked out the result of the gluing by explicitly manipulating polyhedia#tf.
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