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Abstract

The moduli space of stable real cubic surfaces is the quotient of real hyperbolic four-space by a discrete, nonarithme
The volume of the moduli space is 37π2/1080 in the metric of constant curvature−1. Each of the five connected compone
of the moduli space can be described as the quotient of real hyperbolic four-space by a specific arithmetic group. We
the volumes of these components.To cite this article: D. Allcock et al., C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Surfaces cubiques réelles et géométrie hyperbolique réelle. L’espace des modules des surfaces cubiques stables et r
est le quotient de l’espace hyperbolique réel de dimension quatre par un groupe non-arithmétique discret. Le volume d
des modules est 37π2/1080 dans la métrique de courbure constante−1. Chacune des composantes connexes de l’espac
modules peut être décrite comme le quotient de l’espace hyperbolique réel de dimension quatre par un groupe ari
spécifique. Nous calculons le volume des composantes.Pour citer cet article : D. Allcock et al., C. R. Acad. Sci. Paris, Ser. I
337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Results

In [2] we showed that the moduli space of stable cubic surfaces is the quotient of complex hyperbol
space by a certain arithmetic group which we described explicitly. The purpose of this Note is to anno
corresponding result for real cubic surfaces: the moduli space is a quotient of real hyperbolic four-spac
explicit discrete group. The group, however, is not arithmetic. We also compute the volume of the moduli s
its metric of curvature−1. It is 37π2/1080= (4π2/3)(37/1440). (The 4π2/3 is the ratio of the volume of the un
4-sphere to its Euler characteristic, which appears in the Gauss–Bonnet theorem.)

By the moduli spaceMR
0 (resp.MR

s ) we mean the setCR
0 (resp.CR

s ) of cubic forms with real coefficients tha
define smooth (resp. stable) surfaces, modulo the action of GL(4,R). By smooth we mean that the set of comp
points is smooth, and by stable we mean stable in the sense of geometric invariant theory. In this cas

E-mail addresses:allcock@math.utexas.edu (D. Allcock), carlson@math.utah.edu (J.A. Carlson), toledo@math.utah.edu (D. Tol
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00287-5
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Fig. 1. Coxeter diagrams for the reflection subgroupsWj of thePΓj . Each describes a polyhedronCj with one facet per atom of the diagram
The bonds indicate if/how pairs of facets meet: an absent (resp. single, double, triple) bond represents an angle ofπ

2 (resp. π3 , π
4 , π

6 ), and a
dashed (resp. heavy) bond represents ultraparallelism (resp. parallelism at∞). Wj is the group generated by reflections in the facets ofCj , and
Cj is a fundamental domain forWj .

means that the complex surface has no singularities besides nodes. The spaceMR
0 has five connected componen

(see [5]), which we denote byMR
0,j for j = 0,1, . . . ,4.

For each componentMR
0,j of the moduli space we exhibit an arithmetic latticePΓj ⊂ PO(4,1), a union∆j of

two- and three-dimensional real hyperbolic subspaces ofRH4, and an isomorphism

MR
0,j

∼= PΓj\
(
RH4 −∆j

)
(1)

of real analytic orbifolds. We give two concrete descriptions of thePΓj , one arithmetic and one geometric. Fir
PΓj is the projective orthogonal group of the integer quadratic form−x2

0 + m1x
2
1 + · · · + m4x

2
4, wherej of the

mi are 3’s and the rest are 1’s. Second,PΓj is, up to a group of order at most two, the Coxeter groupWj defined
in Fig. 1. More precisely,PΓj is the semidirect product ofWj by the group of diagram automorphisms, which
either trivial or of order two. Yoshida has treated the casej = 0 in [7].

The points of∆j represent nodal surfaces which are limits of smooth surfaces of typej . Since a surface with
a real node is a limit of two different topological types of real surface, it is natural to glue various pairsMR

0,j and

MR
0,j ′ together by identifying part of∆j with part of∆j ′ . Carrying this out in practice means gluing certain fa

of the polyhedraCj to each other and taking care to deal with the diagram automorphisms. A miracle occu
the result of these gluings turns out to be a quotient ofRH4 in its own right:

Theorem 1. There is a nonarithmetic latticePΓ R ⊂ PO(4,1), a union∆ of two- and three-dimensional hyperbo
subspaces ofRH4, and an isomorphism

MR
0

∼= PΓ R\(RH4 −∆
)

of real analytic orbifolds. This identification extends to a homeomorphismMR
s

∼= PΓ R\RH4.

The clue to the nonarithmeticity is thatMR
s is obtained by gluing together arithmetic orbifolds whose gro

fall into two commensurability classes. In the spirit of Gromov-Piatetski and Shapiro [4], one expects the re
group to be non-arithmetic. To prove the nonarithmeticity we use the Galois-conjugation criterion in [3]. N
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Table 1

Type Topology Real lines πorb
1 (MR

0,j ) Euler char. Volume Fraction (%)

0 RP2 + 3 handles 27 S5 1/1920 0.00685 2.03
1 RP2 + 2 handles 15 (S3 × S3)� Z/2 1/288 0.04569 13.51
2 RP2 + 1 handle 7 (D∞ ×D∞)� Z/2 5/576 0.11423 33.78
3 RP2 3

}
!—-∞!—-!—-!

1/96 0.13708 40.54
4 RP2 ∪ S2 3 1/384 0.03427 10.14

37/1440 0.33813 100.00

it happens thatPΓ R preserves an integral quadratic form overZ[√3] which has signature(4,1) and whose Galois
conjugate also has signature(4,1). We note thatPΓ R is not a Coxeter group, even up to finite index, bu
contains an index two subgroup whose fundamental domain is a union of copies of theCj and happens to be
Coxeter polyhedron.

The homeomorphismMR
s

∼= PΓ R\RH4 is not an orbifold isomorphism, but it becomes one if the orbif
structure onPΓ R\RH4 is suitably changed. This can be done explicitly enough to compute the orb
fundamental groupπorb

1 (MR
s )

∼= Z/2× (Z ∗ Z/2), and to see thatMR
s is a bad orbifold in the sense of Thurston

The theory of Coxeter groups makes it easy to compute the orbifold Euler characteristic ofWj\RH4, and hence
the volume of this quotient. Dividing by a factor of two if necessary, we obtain the volume ofPΓj\RH4, which is
the volume ofMR

0,j . It follows that the hyperbolic volume ofPΓ R\RH4 is the sum of these volumes. The resu
are displayed in Table 1. For eachj we give the topology of that type of real cubic surface, the number of its
lines, the orbifold fundamental group ofMR

0,j , and the orbifold Euler characteristic and volume ofPΓj\RH4. Sn
andD∞ denote symmetric and infinite dihedral groups. Note that the component corresponding to the s
topology has the greatest volume, just over 40% of the total, and the component corresponding to surfaces
most real lines has the smallest volume.

2. About the proof

The identification of the components of the moduli space with quotients of real hyperbolic space dep
the construction of [1,2]. Given a smooth complex cubic surfaceS, let T be the triple cover of projective 3-spa
branched alongS, and let(H 3(T ), σ ) denote the resulting special Hodge structure, whereσ is the symmetry
coming from the branched covering transformation. The period map which assigns toS the class of(H 3(T ), σ )

defines an isomorphism between the moduli space of stable cubic surfaces andPΓ \CH4. HerePΓ is the projective
automorphism group of the Hermitian formh(x, y) = −x0ȳ0 + x1ȳ1 + · · · + x4ȳ4 on the latticeΛ = E4,1, where
E = Z[ 3

√
1]. The locusH of CH4 representing singular surfaces is the union of the orthogonal compleme

the norm 1 vectors ofΛ. In more detail, the Hodge structure onH 3(T ), together with a choice of isomorphis
i :H 3(T ,Z) → Λ of HermitianE-modules determines a complex line inΛC = Λ ⊗E C ∼= C4,1 which is negative
for h. ThusL is a point ofCH4, well defined up to the action ofPΓ .

We call an antilinear involution (“anti-involution”) ofCH4 integral if it arises from an anti-involution ofΛ. We
write K0 for the set of all pairs(L,χ) whereL ∈ CH4 − H andχ is an integral anti-involution that preserv
L. If the surfaceS is defined by an equation with real coefficients, then complex conjugationκ(X0, . . . ,X4) =
(�X0, . . . , �X4) acts onH 3(T ,Z) as an anti-involution with respect to theE-module structure. Letχ be the
corresponding integral anti-involutioni ◦κ∗ ◦ i−1 of CH4. This associates toS and a choice ofi a pair(L,χ) ∈ K0,
and defines a period map

MR
0 → PΓ \K0, (2)

which we show is an isomorphism of real analytic orbifolds.
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Another way to look atK0 is as a disjoint union of incomplete real hyperbolic manifolds. To see this, letRH4
χ

be the set of fixed points inCH4 of χ . Then

K0 =
∐
χ

(
RH4

χ − H
)
,

whereχ varies over the integral anti-involutions ofCH4. Now letC be a set of of representatives for the conjug
classes of integral anti-involutions ofCH4 under the action ofPΓ . LetPΓχ be the centralizer ofχ in PΓ . Then
the quotient ofK0 by PΓ is

PΓ \K0 =
∐
χ∈C

PΓχ\(RH4
χ − H

)
.

To understand this quotient in detail, we need to classify the integral anti-involutionsχ of CH4, modulo the action
of PΓ . One shows that there are just five classes, given by

χj (z0, . . . , z4) = (z̄0, ε1z̄1, ε2z̄2, ε3z̄3, ε4z̄4), (3)

wherej of theεi are−1 and the rest are+1. It is clear that eachPΓχj is a subgroup of the projective automorphi
group of theZ-latticeΛχj fixed byχj , and one can check that it is the full projective isometry group. Compu
the quadratic forms on theΛχj leads to the quadratic forms used to describe thePΓj in (1), soPΓχj = PΓj . This

yields (1), where∆j = RH4
χj

∩ H. We found the Coxeter diagrams by using Vinberg’s algorithm [6].
In order to carry out the gluing process leading to Theorem 1, we computed which points of the

chambersCj lie in H; it turns out thatCj ∩ H is a union of faces ofCj . Then we had to figure out whic
faces of theCj andCj ′ to glue to each other and how; for this we studied how the variousRH4

χ meet inCH4.

Finally we worked out the result of the gluing by explicitly manipulating polyhedra inRH4.
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