
Brownian
the
n
simple

the

e la

as.
tion de
ire

niens
hoisit
pe
soupes
C. R. Acad. Sci. Paris, Ser. I 337 (2003) 481–486

Probability Theory/Geometry

SLEs as boundaries of clusters of Brownian loops

Wendelin Werner

Université Paris-Sud and IUF, laboratoire de mathématiques, 91405 Orsay cedex, France

Received 18 August 2003; accepted 30 August 2003

Presented by Paul Malliavin

Abstract

In this research announcement, we show that SLE curves can in fact be viewed as boundaries of certain clusters of
loops (of the clusters in a Brownian loop soup). For small densitiesc of loops, we show that the outer boundaries of
clusters created by the Brownian loop soup are SLEκ -type curves whereκ ∈ (8/3,4] and c related by the usual relatio
c = (3κ − 8)(6− κ)/2κ (i.e.,c corresponds to the central charge of the model). This gives (for any Riemann surface) a
construction of a natural countable family of random disjoint SLEκ loops, that behaves “nicely” under perturbation of
surface and is related to various aspects of conformal field theory and representation theory.To cite this article: W. Werner,
C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Les processus SLE comme frontières d’amas de lacets browniens. Nous étudions certaines propriétés de connectivité d
« soupe » de lacets browniens dans un domaine. On montre l’exitence d’une transition de phase : lorsque l’intensitéc est petite,
il y a un ensemble dénombrable d’amas disjoints alors que lorsquec est grand, il n’y a presque sûrement qu’un seul am
Nous montrons que pour les petites valeurs dec, les frontières de ces amas sont des courbes simples de type SLE (Evolu
Loewner–Schramm) de paramètreκ ∈ (8/3,4] avecc = (6 − κ)(3κ − 8)/2κ . Ceci permet de construire une famille aléato
de boucles de SLE disjointes sur toute surface de Riemann et est étroitement relié à la théorie conforme des champs.Pour citer
cet article : W. Werner, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Supposons que l’on se donne une soupe(lj )j∈J de lacets browniens d’intensitéc dans un domaine ouvertD du
plan complexe (D �= C), définie dans [17]. Rappelons qu’il s’agit d’un ensemble poissonien de lacets brow
dansD, qui est invariant conforme et vérifie la propriété suivante (dite de restriction conforme) : si l’on c
D′ ⊂ D et que l’on ne garde que les lacets qui restent dansD′, alors on obtient une réalisation de la sou
brownienne dansD′. En outre, une conséquence immédiate de la définition est que la réunion de deux
browniennes indépendantes d’intensitéc est une soupe brownienne d’intensité 2c.

E-mail address:wendelin.werner@math.u-psud.fr (W. Werner).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/j.crma.2003.08.003
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On étudie alors les amas crées par cette soupe brownienne : on note(Ki) les différentes composantes conne
de

⋃
j lj . Lorsquec est petit, nous montrons qu’il y a une famille dénombrable de composantes connexes di

qui sont toutes à distance positive de∂D. En outre, nous montrons que leurs frontières extérieures sont des
que l’on peut interpréter comme des lacets de processus de Loewner–Schramm de paramètreκ ∈ (8/3,4], où
c = (6− κ)(3κ − 8)/2κ .

Ceci permet donc de définir de manière déterministe et simple, une famille de lacets de SLEκ , telle qu’elle
devrait apparaître comme limite de modèles discrets bi-dimensionnels critiques issus de la physique st
à partir de cette soupe brownienne.

Ceci est également étroitement relié à des représentations de plus haut poids de l’algèbre de Vir
l’intensitéc devient la charge centrale de ces représentations. En outre, la valeur critiquec = 1 devrait correspondr
à la transition de phase pour la percolation de boucles browniennes.

Une relation précise entre les courbes SLE et la soupe brownienne peut être formulée comme suit
donne un domaine simplement connexeD et deux points distincts du bord deD. Alors, il existe une certain
courbe aléatoireγ simple dea versb dansD, introduite dans [15] appelée une courbe de restriction d’exposaα.
Cette courbe simple, de dimension fractale 4/3 peut être vue comme la frontière droite d’un certain mouvem
Brownien réflechi dea versb [15]. On rajoute àγ la réunion de tous les amas d’une soupe de lacets brow
d’intensitéc qu’elle intersecte, et on considère le bord droit de cet ensemble. Alors, siα etc sont bien choisis,η est
exactement un SLE de paramètreκ . Le lien entreα et c est celui entre le plus haut poids et la charge centrale
des représentations dégénérées de l’algèbre de Virasoro.

Ceci donne une définition de ces processus uniquement à partir d’unions de courbes browniennes, et
objet (cette famille dénombrable de lacets browniens) important pour comprendre certains aspects de l
conforme des champs.

1. Background

The goal of this paper is announce some results that relate the Brownian loop soup introduced in [17
Schramm–Loewner Evolutions (SLE) (in particular for values of the parameter between 8/3 and 4) and random
families of disjoint SLE loops (as they might appear in the scaling limit of many 2d statistical physics models
and in conformal field theory). A more complete paper [26] on the same subject (with proofs, that discus
various consequences of this approach) is in preparation.

SLE processes have been introduced by Schramm in [21], building on the observation that they are
processes that have a certain (conformal) Markovian-type property. There is a one-dimensional family
(indexed by a positive real parameterκ), and they are the only possible candidates for the scaling limits of inter
for two-dimensional critical systems that are believed to be conformally invariant. This definition of SL
Loewner’s equation is a dynamic one-dimensional construction: One basically describes the law ofη[t, t + dt]
givenη[0, t], and integrates this with respect tot . See, e.g., [21,20,11,23] for an introduction to (chordal) S
Furthermore, it is worthwhile stressing that this construction describes one interface, corresponding to
boundary conditions in the discrete model, but that it does in general not give immediately access to the “c
scaling limit” of the system. This raises the following question: Is there a simple and natural way to define
a whole family of SLE loops in a domain that might describe simultaneously all boundaries of clusters?

In [15], a different characterization of the SLE8/3 random curve was derived. It is shown to be the unique ran
curve in a domain, that satisfies a certain conformal restriction property. This characterization is “global” a
not use (directly) the Markovian property. It also enabled to identify this curve with the outer boundary of a
reflected Brownian motion [15], and with the outer boundary of a certain union of Brownian excursion
Hence, it is geometrically possible to construct SLE8/3 from planar Brownian motions (recall also that SLE8/3 is
conjectured to be the scaling limit of the half-plane self-avoiding walk [14]).
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Whenκ = 2, SLE has been proved in [13] to be the scaling limit of the loop-erased random walk. This g
heuristic justification to the fact proved in [15] that adding Brownian loops in a proper way on the top of an2
curve gives the same hull as a Brownian motion. In fact, a similar result holds for allκ ∈ (0,8/3): adding Brownian
loops to an SLEκ gives a sample of a conformal restriction measure, as defined in [15]. This fact can be rel
some representations of infinite-dimensional Lie Algebras [9] (the corresponding martingale has also turne
be instrumental in the papers – [1] and the references therein as well as [8] – that lie links with Conform
Theory). In a way, this shows that SLEκ for κ ∈ (0,8/3] could also be characterized implicitly and globally v
planar Brownian motions: it is the only simple curve such that if one adds a certain density of Brownian
one gets the same hull as the union of some Brownian motions (all these aspects relating restriction me
SLE are reviewed in [25]). This raises naturally the following question: What can one say forκ ∈ (8/3,4], which
is in fact the physically more interesting part (in CFT language, it corresponds to positive central charge
supposed to correspond for instance to the scaling limit of critical Potts (i.e., random cluster) models forq ∈ (1,4]?
Is there such a relation with Brownian motions, loop soups? As we shall see, this relation is in fact in a sens

2. The Brownian loop soup percolation

We now use the Brownian loop soup introduced in [17] to define conformally invariant random fractal do
Start with a Brownian loop soup with small intensityc in a bounded open (not necessarily simply connec
domainD (D = H is also licit). This is a countable Poissonian collection of Brownian loops(lj , j ∈ J ) that stay
in D, and is conformally invariant: The image of this loop soup under a conformal mappingΦ is a loop soup
with the same intensity in the domainΦ(D). Furthermore, it satisfies restriction: If one restricts a loop soup iD

to those loops that stay inD′ ⊂ D, one gets a sample of the loop soup inD′. The parameterc is measuring the
intensity of the Poissonian procedure: for instance, the union of two independent loop soups of intensitc is a
Brownian loop soup with intensity 2c.

Every point inD is almost surely encircled by a countable number of loops in the loop soup, but there ex
small c) many points that are “free” and not encircled by any loop. In fact, one can prove that (whenc < 10) the
dimension of the set of free points is almost surely 2− c/5 (while for c > 10, no point is free), building on th
relation between the loop soup and the Brownian bubbles derived in [17]. This suggests that for very smallc, there
might exist whole paths of points that are not encircled by any loop, i.e., paths that do intersect no loop in
soup.

We now study the setM :=D \⋃
j∈J lj . This Cantor-like random set is the main subject of the present pap

is natural to construct the loop soup clusters: for any two loopsl andl′ in the loop soup, we say that two loops a
in the same cluster if there exist a finite sequence of loopsl0 = l, l1, . . . , ln = l′ in the loop soup such that for a
j � n, lj ∩ lj−1 �= ∅. This defines the loop soup clusterK(l) as the union of all loopsl′ that satisfy this property
The loop soup therefore defines a countable family(Ki, i ∈ I) of (connected) loop soup clusters. It is possible
show that:

Proposition 2.1. There existsc0 such that ifc � c0, then almost surely: all loop soup clusters are at positiv
distance of∂D and they are at positive distance from each other. For any fixed two pointsa andb on the boundary
of D, there exists continuous paths froma to b in M (i.e., that avoids all loops).

Note that clearly, whenc becomes large, since almost surely, no point is free, the statement does not hold
exists only one loop soup cluster, it is dense inD, and its complement is completely disconnected. As we shall
it will be natural to conjecture that the critical value ofc is 1.

This proposition (and its proof ) has similarities with multi-scale Poisson percolation models as stu
Chapter 8 of [19], and with Mandelbrot’s fractal percolation model [18,6].
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3. SLE as loop soup cluster boundaries

When c is small, it is also possible to see that the “exterior boundary” ofKj consists of a union of simpl
(disjoint) loops. For instance, for simply connectedD, one can define the outer boundary∂out

j of Kj as the inner
boundary of the connected component ofD \Kj that also has∂D on its boundary. This associates (for smallc)
to each realization of the loop soup, a countable collection of simple loops(∂u, u ∈ U). Note that even thoug
we know [12] that the dimension of the outer boundary of each Brownian loop is 4/3, the curves∂out

j are outer
boundaries of a countable union of such loops, so that their fractal dimension can be different. In fact:

Proposition 3.1. Whenc � c0, then the curves∂k are SLEκ type-curves, whereκ ∈ (8/3,4] andc are related by
c = c(κ)= (3κ − 8)(6− κ)/(2κ).

This shows in particular that the Hausdorff dimension of all the curves∂u is almost surely 1+ κ/8 (see [2]).
Also, sincec(κ) � 1 for all κ , one can see thatc0 in Proposition 2.1 can not be larger than one. It is natura
expect that this proposition will hold for allc � 1 (i.e., that one can takec0 = 1, and that this is the critical valu
for loop-soup percolation).

The loop soup percolation exterior boundaries therefore define at once a countable conformally in
collection of disjoint SLEκ -type curves inD. When one perturbs the boundary of the domainD and looks how the
law of this family is changed, one can use the restriction property of the Brownian loop soup to give explicit R
Nikodym derivatives between the laws in different domains, in term of the measures on Brownian loops/b
In particular, this shows that it behaves as expected for a conformal field theory with central chargec.

The statement in the proposition is a little bit vague. One way to make the relation between SLEκ and the outer
boundaries of clusters precise goes as follows: Consider a smallc, chooseα > 0 andκ ∈ (8/3,4] appropriately,
i.e., such thatα = (6−κ)/2κ andc = c(κ). If D is a simply connected domain anda �= b two boundary points (on
can take for instanceD = H, a = 0 andb = ∞), we define a random simple curveγ as a sample of the one-side
restriction measure (froma to b in D) with exponentα. This random curve is defined in [15] and can be view
as the boundary of a certain reflected Brownian motion froma to b, or as the boundary of a union of a Poisson
sample Brownian excursions (see [25]). Attach toγ the union of all the loop soup clusters (of an independent l
soup with intensityc) that it intersects. Call the right-boundary of this setη. Then:

Proposition 3.2. η is (exactly) an SLEκ curve.

In fact, if one choosesc as before, but starts with anotherα, one gets a so-called SLE(κ,ρ) curve, as defined
in [15], whereα(κ,ρ)= (ρ + 2)(ρ + 6− κ)/4κ (for more on these SLE(κ,ρ) processes, see [15,7,24]).

The idea of the proof goes as follows: studying the loop soup itself (see above) shows thatη is a simple curve tha
stays away from the boundary ofD. Because of the restriction properties of both the loop soup and the curγ ,
it is possible to argue that the curveη satisfies a “Markovian-type” property that basically implies that it is
SLE(κ,ρ) process for someκ andρ (this uses the fact that the Bessel processes used to define these SLE pr
are the only real continuous Markov process with Brownian scaling). The values ofκ andρ can then be worked
out by looking at how the law ofη behaves when one perturbs the boundary of the domainD, and comparing this
with the local martingales pointed out for SLE(κ,ρ) by Dubédat in [7].

One consequence of this result is the “reversibility” of these SLE, i.e.:η and−1/η have the same law (if on
looks at SLE from the origin to infinity inH).

Along similar lines, it is possible to give a heuristic justification to the fact that chordal SLEκ is the (annealed
uniform measure on self-avoiding walks on the random fractalM, whenc = c(κ): Consider a Brownian loop
soup inD with intensityc. Suppose that there exist a conformally invariant and uniform way to choose a s
curveη from a to b that avoids all loops in the loop soup. This is very vague and as unprecise as to say th
exists a uniform conformally invariant way to choose a self-avoiding curve from the origin to infinity, which w



W. Werner / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 481–486 485

t, one
finition
es the
the
ted to

interpret

space.

, as for

n

. Maybe
an have

robably

btain a

the
ing after
in two-
ations

up is a
pplies
chramm
aussian

I also
correspond to the casec = 0; see [14,25] for how one can (and cannot) make such definitions rigorous. In fac
should rather speak of “intrinsic” measure rather than uniform measures (see [25]). Anyway, if such a de
would hold, then the conformal restriction property of the loop soup implies readily that this curve satisfi
Markovian property, so that it should be an SLE curve. The valueκ can then be determined as before studying
way in which the law of this curve is changed under restriction. It is worthwhile exploring whether this is rela
the “quantum gravity” approach to critical phenomena developed by physicists, see, e.g., [10] (here, we
SLE as self-avoiding walk on a natural continuous random geometric object).

4. Consequences

This has many consequences. We plan to address the following items in forthcoming papers:

– The restriction property of the loop soup shows that these clusters satisfy a “Markovian property” in
This is related to various things, in particular to certain representations of the Virasoro algebra.

– This family of SLE loops defines at once a big family of observables. This allows to define a naturalL2 space,
on which the Loewner semi-group acts. This is related to considerations from conformal field theory
instance in [3,5].

– One can do similar things using radial restriction measures and radial restriction.
– This construction works obviously on any Riemann surface, and the value of the criticalc is the same as o

the plane. This is of course related to some of the previous items.

We now conclude the paper with some comments:

– There exists a representation of correlation functions for spin systems (see, e.g., [4]) via random walks
this is related to the present loop soup percolation (i.e., chain of Brownian loops) representation, and c
fruitful consequences.

– Thec = 0 model (i.e., the scaling limit of percolation clusters, say) does not appear easily here. This is p
related to the fact that in the CFT approach, thec = 0 case is often treated via thec → 0 limit [5].

– The construction of SLE in Proposition 3.1 is very non-symmetric, and one may be surprised to o
symmetric curve in the end (with respect to the imaginary axis). Note that it the limiting casec = 0 (where no
loop is present), this was already proved to be the case [15].

– The construction of SLE in Proposition 3.1 is very “two-dimensional” and in spirit very different from
Loewner equation approach. The fact that these two constructions are equivalent is not so surpris
all: because of the fact that there are only few candidates to describe conformally invariant models
dimensions, many a priori different definitions in fact coincide (which is one of the instrumental observ
[16] that allowed to use SLE to determine the Brownian exponent [11,12]). As the Brownian loop so
rich conformally invariant object, it is not so surprising that it “contains” SLE curves. The same remark a
to the relation between the Gaussian Free Field and SLE curves/loops recently discovered by Oded S
and Scott Sheffield [22]. It also raises the question of whether there exists a direct link between the G
Free Field and the loop soup.
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