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Abstract

In this research announcement, we show that SLE curves can in fact be viewed as boundaries of certain clusters of Browniar
loops (of the clusters in a Brownian loop soup). For small densitie§ loops, we show that the outer boundaries of the
clusters created by the Brownian loop soup are Shfpe curves wherg < (8/3,4] and ¢ related by the usual relation
c=(3k —8)(6—k)/2« (i.e.,c corresponds to the central charge of the model). This gives (for any Riemann surface) a simple
construction of a natural countable family of random disjoint gll&ops, that behaves “nicely” under perturbation of the
surface and is related to various aspects of conformal field theory and representationTibeigythis article: W. Werner,

C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Lesprocessus SLE commefrontiéresd’ amas delacets browniens. Nous étudions certaines propriétés de connectivité de la
«soupe » de lacets browniens dans un domaine. On montre I'exitence d’une transition de phase : lorsque tiattmstée,

il y a un ensemble dénombrable d’amas disjoints alors que lorse@st grand, il n'y a presque sirement qu’'un seul amas.
Nous montrons que pour les petites valeurs,des frontieres de ces amas sont des courbes simples de type SLE (Evolution de
Loewner—Schramm) de parameires (8/3, 4] avecc = (6 — «)(3x — 8)/2«. Ceci permet de construire une famille aléatoire

de boucles de SLE disjointes sur toute surface de Riemann et est étroitement relié a la théorie conforme deBochanigs.
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Version francaise abr égée

Supposons que I'on se donne une solpg < de lacets browniens d'intensi¢gédans un domaine ouveft du
plan complexe D # C), définie dans [17]. Rappelons gu'il s’agit d’'un ensemble poissonien de lacets browniens
dansD, qui est invariant conforme et vérifie la propriété suivante (dite de restriction conforme) : si I'on choisit
D' c D et que I'on ne garde que les lacets qui restent dahsalors on obtient une réalisation de la soupe
brownienne dan®)’. En outre, une conséquence immédiate de la définition est que la réunion de deux soupes
browniennes indépendantes d’intensist une soupe brownienne d’intensité 2
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On étudie alors les amas crées par cette soupe brownienne : ofKnptes différentes composantes connexes
der I;. Lorsquer est petit, nous montrons qu'’il y a une famille dénombrable de composantes connexes disjointes
qui sont toutes a distance positive @B. En outre, nous montrons que leurs frontieres extérieures sont des lacets
que I'on peut interpréter comme des lacets de processus de Loewner—Schramm de parani8i& 4], ou
c=(6-—x)Bk —8)/2.

Ceci permet donc de définir de maniere déterministe et simple, une famille de lacets detSleEqu’elle
devrait apparaitre comme limite de modéles discrets bi-dimensionnels critiques issus de la physique statistique
a partir de cette soupe brownienne.

Ceci est également étroitement relié a des représentations de plus haut poids de l'algébre de Virasoro, €
I'intensitéc devient la charge centrale de ces représentations. En outre, la valeur eritidudevrait correspondre
a la transition de phase pour la percolation de boucles browniennes.

Une relation précise entre les courbes SLE et la soupe brownienne peut étre formulée comme suit : On se
donne un domaine simplement conndeet deux points distincts du bord de. Alors, il existe une certaine
courbe aléatoirg simple dez versb dansD, introduite dans [15] appelée une courbe de restriction d’expasant
Cette courbe simple, de dimension fractal@ peut étre vue comme la frontiére droite d’'un certain mouvement
Brownien réflechi dex versb [15]. On rajoute & la réunion de tous les amas d’une soupe de lacets browniens
d’intensitéc qu’elle intersecte, et on considere le bord droit de cet ensemble. Alargetsisont bien choisis; est
exactement un SLE de parameétre_e lien entrex etc est celui entre le plus haut poids et la charge centrale pour
des représentations dégénérées de 'algébre de Virasoro.

Ceci donne une définition de ces processus uniquement a partir d’'unions de courbes browniennes, et définit ul
objet (cette famille dénombrable de lacets browniens) important pour comprendre certains aspects de la théori
conforme des champs.

1. Background

The goal of this paper is announce some results that relate the Brownian loop soup introduced in [17] to the
Schramm-Loewner Evolutions (SLE) (in particular for values of the parameter bety8ean8 4) and random
families of disjoint SLE loops (as they might appear in the scaling limit of mahwgtatistical physics models,
and in conformal field theory). A more complete paper [26] on the same subject (with proofs, that discusses also
various consequences of this approach) is in preparation.

SLE processes have been introduced by Schramm in [21], building on the observation that they are the only
processes that have a certain (conformal) Markovian-type property. There is a one-dimensional family of SLEs
(indexed by a positive real parameigr and they are the only possible candidates for the scaling limits of interfaces
for two-dimensional critical systems that are believed to be conformally invariant. This definition of SLE via
Loewner’s equation is a dynamic one-dimensional construction: One basically describes theylaw ef dr]
given 5[0, t], and integrates this with respect#oSee, e.g., [21,20,11,23] for an introduction to (chordal) SLE.
Furthermore, it is worthwhile stressing that this construction describes one interface, corresponding to specific
boundary conditions in the discrete model, but that it does in general not give immediately access to the “complete
scaling limit” of the system. This raises the following question: Is there a simple and natural way to define at once
a whole family of SLE loops in a domain that might describe simultaneously all boundaries of clusters?

In [15], a different characterization of the Sg g random curve was derived. Itis shown to be the unique random
curve in a domain, that satisfies a certain conformal restriction property. This characterization is “global” and does
not use (directly) the Markovian property. It also enabled to identify this curve with the outer boundary of a certain
reflected Brownian motion [15], and with the outer boundary of a certain union of Brownian excursions [25].
Hence, it is geometrically possible to construct §jHrom planar Brownian motions (recall also that S &is
conjectured to be the scaling limit of the half-plane self-avoiding walk [14]).
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Whenk = 2, SLE has been proved in [13] to be the scaling limit of the loop-erased random walk. This gives a
heuristic justification to the fact proved in [15] that adding Brownian loops in a proper way on the top of an SLE
curve gives the same hull as a Brownian motion. In fact, a similar result holds foeald, 8/3): adding Brownian
loops to an SLE gives a sample of a conformal restriction measure, as defined in [15]. This fact can be related to
some representations of infinite-dimensional Lie Algebras [9] (the corresponding martingale has also turned out to
be instrumental in the papers — [1] and the references therein as well as [8] — that lie links with Conformal Field
Theory). In a way, this shows that Sl.Eor « € (0, 8/3] could also be characterized implicitly and globally via
planar Brownian motions: it is the only simple curve such that if one adds a certain density of Brownian loops,
one gets the same hull as the union of some Brownian motions (all these aspects relating restriction measures t
SLE are reviewed in [25]). This raises naturally the following question: What can one sayf/3, 4], which
is in fact the physically more interesting part (in CFT language, it corresponds to positive central charge) that is
supposed to correspond for instance to the scaling limit of critical Potts (i.e., random cluster) mogeis104]?

Is there such a relation with Brownian motions, loop soups? As we shall see, this relation is in fact in a sense richer.

2. The Brownian loop soup percolation

We now use the Brownian loop soup introduced in [17] to define conformally invariant random fractal domains:
Start with a Brownian loop soup with small intensityin a bounded open (not necessarily simply connected)
domainD (D = H is also licit). This is a countable Poissonian collection of Brownian lqéps; € J) that stay
in D, and is conformally invariant: The image of this loop soup under a conformal magdpiisga loop soup
with the same intensity in the domain(D). Furthermore, it satisfies restriction: If one restricts a loop soup in
to those loops that stay i’ ¢ D, one gets a sample of the loop soupli The parameter is measuring the
intensity of the Poissonian procedure: for instance, the union of two independent loop soups of irté&nsity
Brownian loop soup with intensityc2

Every pointinD is almost surely encircled by a countable number of loops in the loop soup, but there exist (for
small¢) many points that are “free” and not encircled by any loop. In fact, one can prove that iwhég) the
dimension of the set of free points is almost sureky 2/5 (while for ¢ > 10, no point is free), building on the
relation between the loop soup and the Brownian bubbles derived in [17]. This suggests that for very threia|
might exist whole paths of points that are not encircled by any loop, i.e., paths that do intersect no loop in the loop
soup.

We now study the se¥ := D\ UJ-EJ 1;. This Cantor-like random set is the main subject of the present paper. It
is natural to construct the loop soup clusters: for any two ldapsl!’ in the loop soup, we say that two loops are
in the same cluster if there exist a finite sequence of 16®psi, 11,..., 1" =1’ in the loop soup such that for all
j <n, 1PN~ +£@. This defines the loop soup clust&r!) as the union of all loop# that satisfy this property.

The loop soup therefore defines a countable farfily, i € I') of (connected) loop soup clusters. It is possible to
show that:

Proposition 2.1. There existsg such that ifc < co, then almost surelyall loop soup clusters are at positive
distance ob D and they are at positive distance from each other. For any fixed two poersl» on the boundary
of D, there exists continuous paths frento » in M (i.e., that avoids all loopgs

Note that clearly, when becomes large, since almost surely, no pointis free, the statement does not hold: There
exists only one loop soup cluster, it is denséinand its complement is completely disconnected. As we shall see,
it will be natural to conjecture that the critical valuecis 1.

This proposition (and its proof) has similarities with multi-scale Poisson percolation models as studied in
Chapter 8 of [19], and with Mandelbrot's fractal percolation model [18,6].
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3. SLE asloop soup cluster boundaries

Whenc is small, it is also possible to see that the “exterior boundaryKgefconsists of a union of simple
(disjoint) loops. For instance, for simply connectedone can define the outer boundaf}! of K; as the inner
boundary of the connected componentldf, K ; that also hag$ D on its boundary. This associates (for small
to each realization of the loop soup, a countable collection of simple IGps: € U). Note that even though
we know [12] that the dimension of the outer boundary of each Brownian loop3istde curveﬁ;?“t are outer
boundaries of a countable union of such loops, so that their fractal dimension can be different. In fact:

Proposition 3.1. Whenc < cg, then the curves; are SLE, type-curves, where € (8/3, 4] andc are related by
c=clk)=Bk —8)(6—x)/(2).

This shows in particular that the Hausdorff dimension of all the cubyes almost surely 3 «/8 (see [2]).
Also, sincec(x) < 1 for all ¥, one can see that in Proposition 2.1 can not be larger than one. It is natural to
expect that this proposition will hold for al< 1 (i.e., that one can takg = 1, and that this is the critical value
for loop-soup percolation).

The loop soup percolation exterior boundaries therefore define at once a countable conformally invariant
collection of disjoint SLE-type curves inD. When one perturbs the boundary of the donfaiand looks how the
law of this family is changed, one can use the restriction property of the Brownian loop soup to give explicit Radon—
Nikodym derivatives between the laws in different domains, in term of the measures on Brownian loops/bubbles.
In particular, this shows that it behaves as expected for a conformal field theory with centralcharge

The statement in the proposition is a little bit vague. One way to make the relation betwegai81L e outer
boundaries of clusters precise goes as follows: Consider a spaibosexr > 0 andk € (8/3, 4] appropriately,
i.e., suchtha& = (6 —«)/2«¢ andc = c(x). If D is a simply connected domain ang: b two boundary points (one
can take for instanc® = H, a = 0 andb = c0), we define a random simple curyeas a sample of the one-sided
restriction measure (from to b in D) with exponentx. This random curve is defined in [15] and can be viewed
as the boundary of a certain reflected Brownian motion faotm b, or as the boundary of a union of a Poissonian
sample Brownian excursions (see [25]). Attachytthe union of all the loop soup clusters (of an independent loop
soup with intensity) that it intersects. Call the right-boundary of this gefThen:

Proposition 3.2. 5 is (exactly an SLE curve.

In fact, if one chooses as before, but starts with another one gets a so-called SLE(p) curve, as defined
in [15], wherea(k, p) = (p + 2)(p + 6 — ) /4« (for more on these SL, p) processes, see [15,7,24]).

The idea of the proof goes as follows: studying the loop soup itself (see above) showisthatmple curve that
stays away from the boundary &f. Because of the restriction properties of both the loop soup and the gurve
it is possible to argue that the curyesatisfies a “Markovian-type” property that basically implies that it is an
SLE(x, p) process for some andp (this uses the fact that the Bessel processes used to define these SLE processes
are the only real continuous Markov process with Brownian scaling). The valuesiod o can then be worked
out by looking at how the law of behaves when one perturbs the boundary of the domasmd comparing this
with the local martingales pointed out for Sl ) by Dubédat in [7].

One consequence of this result is the “reversibility” of these SLE,;j.and—1/n have the same law (if one
looks at SLE from the origin to infinity if).

Along similar lines, it is possible to give a heuristic justification to the fact that chorda} & the (annealed)
uniform measure on self-avoiding walks on the random fratfalwhenc = ¢(x): Consider a Brownian loop
soup inD with intensityc. Suppose that there exist a conformally invariant and uniform way to choose a simple
curven from a to b that avoids all loops in the loop soup. This is very vague and as unprecise as to say that there
exists a uniform conformally invariant way to choose a self-avoiding curve from the origin to infinity, which would
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correspond to the cage= 0; see [14,25] for how one can (and cannot) make such definitions rigorous. In fact, one
should rather speak of “intrinsic” measure rather than uniform measures (see [25]). Anyway, if such a definition
would hold, then the conformal restriction property of the loop soup implies readily that this curve satisfies the
Markovian property, so that it should be an SLE curve. The valoan then be determined as before studying the
way in which the law of this curve is changed under restriction. It is worthwhile exploring whether this is related to
the “quantum gravity” approach to critical phenomena developed by physicists, see, e.g., [10] (here, we interpret
SLE as self-avoiding walk on a natural continuous random geometric object).

4. Consequences

This has many consequences. We plan to address the following items in forthcoming papers:

— The restriction property of the loop soup shows that these clusters satisfy a “Markovian property” in space.
This is related to various things, in particular to certain representations of the Virasoro algebra.

— This family of SLE loops defines at once a big family of observables. This allows to define a dZtsgce,
on which the Loewner semi-group acts. This is related to considerations from conformal field theory, as for
instance in [3,5].

— One can do similar things using radial restriction measures and radial restriction.

— This construction works obviously on any Riemann surface, and the value of the eritictiie same as on
the plane. This is of course related to some of the previous items.

We now conclude the paper with some comments:

— There exists a representation of correlation functions for spin systems (see, e.g., [4]) via random walks. Maybe
this is related to the present loop soup percolation (i.e., chain of Brownian loops) representation, and can have
fruitful consequences.

— Thec = 0 model(i.e., the scaling limit of percolation clusters, say) does not appear easily here. This is probably
related to the fact that in the CFT approach,the O case is often treated via the— O limit [5].

— The construction of SLE in Proposition 3.1 is very non-symmetric, and one may be surprised to obtain a
symmetric curve in the end (with respect to the imaginary axis). Note that it the limiting-cage(where no
loop is present), this was already proved to be the case [15].

— The construction of SLE in Proposition 3.1 is very “two-dimensional” and in spirit very different from the
Loewner equation approach. The fact that these two constructions are equivalent is not so surprising after
all: because of the fact that there are only few candidates to describe conformally invariant models in two-
dimensions, many a priori different definitions in fact coincide (which is one of the instrumental observations
[16] that allowed to use SLE to determine the Brownian exponent [11,12]). As the Brownian loop soup is a
rich conformally invariant object, it is not so surprising that it “contains” SLE curves. The same remark applies
to the relation between the Gaussian Free Field and SLE curves/loops recently discovered by Oded Schramn
and Scott Sheffield [22]. It also raises the question of whether there exists a direct link between the Gaussian
Free Field and the loop soup.
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