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Abstract

Consider a random HamiltonianHN(�σ) for �σ ∈ ΣN = {0,1}N. We assume that the family(HN(�σ)) is jointly Gaussian
centered and that for�σ1, �σ2 ∈ΣN, N−1EHN(�σ1)HN(�σ2) = ξ(N−1 ∑

i�N σ1
i σ

2
i ) for a certain functionξ on R. F. Guerra

proved the remarkable fact that the free energy of the system with HamiltonianHN(�σ)+ h
∑
i�N σi is bounded below by the

free energy of the Parisi solution provided thatξ is convexonR. We prove that this fact remains (asymptotically) true when
functionξ is only assumed to be convex onR

+. This covers in particular the case of thep-spin interaction model for anyp. To
cite this article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur une majoration célèbre de F. Guerra. Considérons un hamiltonian aléatoireHN(�σ) où �σ ∈ ΣN = {0,1}N. Nous
supposons la famille(HN(�σ)) gaussienne centrée et que pour tous�σ1, �σ2 ∈ ΣN, on ait N−1EHN(�σ1)HN(�σ2) =
ξ(N−1 ∑

i�N σ1
i σ

2
i ) pour une certaine fonctionξ sur R. F. Guerra a prouvé récemment le fait remarquable que l’éne

libre du système d’hamiltonienHN(�σ) + h
∑
i�N σi est bornée inferieurement par l’énergie libre de la solution de P

lorsqueξ estconvexesurR. Nous montrons que ceci reste asymptotiquement vrai si l’on suppose seulement que la fonξ
est convexe surR+. Ce résultat s’applique en particulier au cas du modèle d’interaction àp-spin pour toutp. Pour citer cet
article : M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Statement of the result

We consider for eachN a Gaussian HamiltonianHN onΣN , that is a centered jointly Gaussian family of r
indexed byΣN . We assume that for a certain sequencec(N)→ 0 and a certain functionξ : R → R, we have

∀�σ 1, �σ 2 ∈ΣN,
∣∣∣∣ 1

N
EHN

(�σ 1)HN(�σ 2) − ξ(R1,2)

∣∣∣∣ � c(N), (1)

whereR1,2 = R1,2(�σ 1, �σ 2)=N−1 ∑
i�N σ

1
i σ

2
i .

We fix once and for all a numberh (that represents the strength of an “external field”). Consider an integerk and
numbers 0=m0 �m1 � · · · �mk−1 �mk = 1 and 0= q0 � q1 � · · · � qk+1 = 1. To lighten notation, we write

m = (m0, . . . ,mk−1,mk); q = (q0, . . . , qk, qk+1). (2)
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Consider independent standard Gaussian r.v.(zp)0�p�k and defineap = √
ξ ′(qp+1)− ξ ′(qp). We define the

r.v. Xk+1 = logch(h+ ∑
0�p�k apzp) and recursively, for�� 0 we defineX� =m−1

� logE� expm�X�+1, where
E� denotes expectation in the r.v.zp,p � �. Whenm� = 0 this meansX� =E�X�+1. ThusX0 is a number. We se
θ(q)= qξ ′(q)− ξ(q) and

P(m,q)= log2+X0 − 1

2

∑
1���k

m�
(
θ(q�+1)− θ(q�)

)
. (3)

To lighten the exposition, we do not follow the convention of Physics to put a minus sign in front of the Hamilt

Theorem 1.1 (Guerra’s bound [2]).If ξ is convex, we have

1

N
E log

∑
�σ

exp

(
HN(�σ)+ h

∑
i�N

σi

)
� P := infPk(m,q)+ c(N), (4)

where the infimum is computed over the all values ofk and the parametersm, q.

Strictly speaking, Guerra proves this result only forξ(x)= axp, p even,a > 0 but almost no changes are requir
to his proof to obtain the above statement. Our main result is the following:

Theorem 1.2. If ξ is convex onR+, we have

lim sup
N→∞

1

N
E log

∑
�σ

exp

(
HN(�σ )+ h

∑
i�N

σi

)
� P := infPk(m,q), (5)

where the infimum is computed over all the values of the parameters.

This result applies in particular to the case of thep-spin interaction model for all values ofp while Theorem 1.1
applies only to the case wherep is even.

It is proved in [4] that whenξ is convex,ξ(x) = ξ(−x), ξ(0) = ξ ′(0) = 0 andξ ′(x) > 0 for x > 0 there is
equality in (5) (and the limsup is a limit). It is natural to conjecture that this remains the case under the con
on Theorem 1.2 but this question remains open.

2. Elements of proof

The central idea is Guerra’s interpolation scheme. Givenm1, . . . ,mk andq1, q2, . . . , qk as above, consider fo
i � N and 0� � � k independent standard Gaussian r.v.zi,�, independent of the randomness ofHN , and for
0 � t � 1 consider

Ht(�σ)=
√
tHN(�σ)+

√
1− t

∑
i�N

σi
∑

0���k
a�zi,� + h

∑
i�N

σi .

Set Fk+1,t = log
∑

�σ exp(HN(�σ)) and define recursivelyF�,t = m−1
� logE� expm�F�+1,t for � � 1, whereE�

denote expectation in the r.v.zi,p, p � �. Setφ(t) = N−1EF1,t , where expectation in now in the randomne
of HN and the r.v.zi,0. For 1� � � k, defineW� = expm�(F�+1,t − F�,t ) and for a functionf on ΣN , let
γ�(f ) = E�(W� · · ·Wk〈f 〉t ), where 〈·〉t denote averaging for the Gibbs measure with HamiltonianHt . It is a
probability onΣN ; we denote byγ⊗2

� its square onΣ2
N , and we denote byµ� the probability onΣ2

N given by
µ�(f )=E(W1 · · ·W�−1γ

⊗2
� (f )) for a functionf onΣ2

N . Whenξ ′(0)= 0, Guerra [2] proves the identity

φ′(t)= −1

2

∑
1���k

m�
(
θ(q�+1)− θ(q�)

) − 1

2

∑
1���k

(m� −m�−1)µ�
(
ξ(R1,2)−R1,2ξ

′(q�)+ θ(q�)
) +R, (6)
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where|R| � c(N). When one assumes thatξ is convex, the termξ(R1,2)−R1,2ξ
′(q�)+ θ(q�) is non-negative, so

that (6) implies thatφ(1)� φ(0)− (1/2)
∑

1���k m�(θ(q�+1)− θ(q�))+ c(N). It is then easy to computeφ(0)
since for the corresponding Hamiltonian there is not interaction between the different sites, and this
Theorem 1.1.

The natural approach to prove Theorem 1.2 would then be to follow the same proof, and to show that,
sense, as seen for the point of view of the functionalµ�, the quantityR1,2 is essentially non-negative, in whic
case it suffices to know thatξ is convex onR+ to assert that the termξ(R1,2)−R1,2ξ

′(q�)+ θ(q�) is non-negative
Having in mind purposes somewhat similar to the present ones, the author could establish ([3], Section 6

under very general conditions, the quantityR1,2 is essentially non-negative when seen from the point of view
random Gibbs measureG, in the sense that for eachε > 0, asN → ∞, we haveE〈1{R1,2�ε}〉 → 0, whereE denotes
expectation in the disorder and〈·〉 denotes average for the Gibbs measureG⊗2. The condition under which thi
result is true is (roughly speaking) the validity of the Ghirlanda–Guerra identities. These authors discove
these identities become rather miraculously true when one adds to the random Hamiltonian of the Gibbs’
a suitable “lower order” term that does not change the limit in (5). It is then natural to expect that one coul
this approach to prove that the quantityR1,2 is essentially positive from the point of view of the functionalµ�.
Unfortunately, when one tries to extend the Ghirlanda–Guerra identities to this setting of the functionalsµ�, one
seems to run into intractable computational difficulties, a fact that puzzled the author for a long time. T
out of this morass was (unintentionally) provided by the paper [1]. The goal of these authors is to provide
general bound that of (4). In view of the result of [4] it seems unlikely that this goal will be achieved, but a
benefit of their approach is that they propose a setting in which the arguments of [3], Section 6.6 can be e

The basic idea of [1] is to consider quantities of the typeE log
(∑

α,�σ wα expH(�σ,α)). When the family
of weightswα is suitably chosen, using Derrida–Ruelle cascades, this allows one to recover quantitie
as in the right-hand side of (3). Considering an integerk, we take as indexesα the k + 1-tuples(n0, . . . , nk)

where n0, . . . , nk � 1. For p � 1, i � 1 and integersn0, . . . , np we consider independent standard norm
r.v. zi,n0,...,np and yn0,...,np , independent of the Hamiltonian. Considerq as in (2) and for 0� p � k define
ap = √

ξ ′(qp+1)− ξ ′(qp) andbp = √
θ(qp+1)− θ(qp) and consider

HN,t (�σ ,α)= √
t

(
HN(�σ)+

√
N

∑
0�p�k

bpyn0,...,np

)
+ √

1− t

( ∑
i�N

σi
∑

0�p�k
apzi,n0,...,np

)
+ h

∑
i�N

σi .

Consider the quantitiesZN,t = ∑
α,�σ wα expHN,t (�σ,α) andψN(t) = N−1E logZN,t . The computation corre

sponding to the relation (6) is the relation (that holds wheneverξ ′(0)= 0 and the weightswα are independent o
all the other r.v. already introduced)

ψ ′
N(t)= −1

2
E

〈
ξ(R1,2)−R1,2ξ

′(Rα,β)+ θ(Rα,β)
〉
t
+R, (7)

where|R| � c(N) and where, forα = (n0, . . . , nk) andβ = (n′
0, . . . , n

′
k) we haveRα,β = q�, where� is the largest

such thatn0 = n′
0, . . . , n�−1 = n′

�−1, and, where, for a functionf (�σ 1, �σ 2, α,β) we have

〈f 〉t =Z−2
N,t

∑
wαwβf

(�σ 1, �σ 2, α,β
)
exp

(
HN,t

(�σ 1, α
) +HN,t

(�σ 2, β
))
, (8)

where the summation is over all values ofα, β, �σ 1, �σ 2. Thus, whenξ is convex, (7) yieldsψ(1)�ψ(0)+ c(N).

We then choose the weightswα as follows (probability cascades). Assuming, without loss of generality that 0<m0

andm1 < 1 (rather thanm0 = 0 andm1 = 1), we consider a non-increasing enumeration(xn0,...,np−1,�)��1 of the
points generated by a Poisson point process onR of intensity measure exp(−mpy)dy, these processes bein
independent of each other as the indicesn0, . . . , np−1 vary, and we takewα = U−1 exp

(∑
0�p�k xn0,...,np−1,np

)
,



480 M. Talagrand / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 477–480

choice
”

o the

if the

he one

e
simply
antity
whereU is the normalization factor that ensures that the sum of the weights is 1. It can be shown with this
that the relationψ(1)�ψ(0)+ c(N) yields (4). To prove Theorem 1.2 let us introduce the “perturbation term

H ′
N(�σ, �β)= a(N)

∑
��1

β�

N(�−1)/2

∑
1�i1<···<i��N

gi1···i�σi1 · · ·σi� ,

where the r.v.gi1···i� are i.i.d. standard normal, independent of all the r.v. previously considered, where�β = (β�)��1,

|β�| � 1, and wherea(N)→ 0 will be specified later. The purpose of the perturbation term is to give rise t
Ghirlanda–Guerra equalities, as in [3], Section 6.4. We then consider

ψN(t)= 1

N

∫
E log

∑
α,�σ

wα exp
(
HN,t (�σ,α)+H ′

N(�σ, �β))d �β,

where (as everywhere below) the integral is over the domain|β�| � 1 for each�. As in (7) we now have that

ψ ′
N(t)= −1

2

∫
E

〈
ξ(R1,2)−R1,2ξ(Rα,β)+ θ(Rα,β)

〉
t, �β d�β +R, (9)

where〈·〉t, �β has the obvious definition similar to (8). To prove Theorem 1.2 is then suffices to show that
sequencea(N) goes to 0 slowly enough, for anyε > 0 we have (uniformly int) that

lim
N→∞

∫
E〈1{R1,2�−ε}〉t, �β d �β = 0.

This is done by a rather straightforward adaptation of the arguments of [3], Sections 6.5 and 6.7. T
point that is not immediate is that to make the arguments work one needs to know that if we setA(α) =∑

�σ exp(HN,t (�σ,α)+H ′
N(�σ, �β)), the functionN−1E log

∑
α wαA(α) has fluctuations of order�1, and becaus

of the weightswα we cannot deduce this immediately from Gaussian concentration of measure. But we
observe that a few of the indicesα carry most of the weight, and that by Gaussian concentration, each qu
logA(α) has fluctuations of orderN1/2, and its distribution is independent ofα.
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