On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data

Luc Molineta, Francis Ribaudb

a L.A.G.A., Institut Galilée, Université Paris-Nord, 93430 Villetaneuse, France
b Université de Marne-La-Vallée, équipe d’analyse et de mathématiques appliquées, 5, bd. Descartes, Champs-sur-Marne, 77454 Marne-La-Vallée cedex 2, France

Received 4 June 2003; accepted 15 September 2003

Abstract

We prove global well-posedness results for small initial data in $H^s(\mathbb{R})$, $s > s_k$, and in $\dot{B}^{s_k-1/2}_{2,1}(\mathbb{R})$, $s_k = 1/2 - 1/k$, for the generalized Benjamin–Ono equation $\partial_t u + H \partial_x^2 u + \partial_x (u^{k+1}) = 0$, $k \geq 4$. We also consider the cases $k = 2, 3$. To cite this article: L. Molinet, F. Ribaud, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

Résumé

Sur le problème de Cauchy pour l’équation de Benjamin–Ono généralisée avec données initiales petites. Nous montrons que l’équation de Benjamin–Ono généralisée $\partial_t u + H \partial_x^2 u + \partial_x (u^{k+1}) = 0$, $k \geq 4$, est globalement bien posée dans $H^s(\mathbb{R})$, $s > s_k$, et dans $\dot{B}^{s_k-1/2}_{2,1}(\mathbb{R})$, $s_k = 1/2 - 1/k$, pour les données petites. Nous considérons également les cas $k = 2, 3$. Pour citer cet article : L. Molinet, F. Ribaud, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

1. Introduction and main results

We consider the Cauchy problem for the generalized Benjamin–Ono equation

$$
\begin{aligned}
\partial_t u + H \partial_x^2 u + \partial_x (u^{k+1}) &= 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\
u(0, x) &= u_0(x),
\end{aligned}
$$

where H denotes the Hilbert transform. The Benjamin–Ono equation ($k = 1$) arises as a model for long internal gravity waves in deep stratified fluids. For $k \geq 2$, the local well-posedness of (GBO) is known in $H^s(\mathbb{R})$, $s > 3/2$, see [2]. Moreover, in the case of small initial data, (GBO) is locally well-posed (in time) in $H^s(\mathbb{R})$ as soon as

$$
s > 1 \quad \text{if } k = 2, \quad s > 5/6 \quad \text{if } k = 3 \quad \text{and} \quad s \geq 3/4 \quad \text{if } k \geq 4,
$$

1631-073X/$ – see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Moreover, for any $T > 0$, $H^s(\mathbb{R})$ is only known for $k \geq 4$ and $s \geq 1$, see [2] again. Up to now these results are the best ones concerning (GBO) with small initial data. On the other hand, as noticed in [1], by scaling considerations one could expect (GBO) to be locally well-posed in $H^s(\mathbb{R})$ for $s > s_k$ and ill-posed for $s < s_k$. In this direction, it is proved in [1] that the flow map $u_0 \mapsto u(t)$ (if it exists) is not locally uniformly continuous in $H^s(\mathbb{R})$. Hence for the (GBO) equation there exists a large gap between positive and negative available results.

In this Note our aim is to prove that for small initial data, (GBO) is locally well-posed in $H^s(\mathbb{R})$ as soon as

$$s > 1/2 \quad \text{if } k = 2, \quad s > 1/3 \quad \text{if } k = 3 \quad \text{and} \quad s > s_k \quad \text{if } k \geq 4,$$

and globally well-posed as soon as

$$s \geq 1/2 \quad \text{if } k = 3 \quad \text{and} \quad s > s_k \quad \text{if } k \geq 4.$$

Actually we prove that for $k \geq 4$, (GBO) is globally well-posed for small initial data in the homogeneous Besov space $\dot{B}^{s_k,1}_2(\mathbb{R})$. We prove also that (GBO) is locally well-posed in the nonhomogeneous Besov space $\dot{B}^{1/2,1}_2(\mathbb{R})$ if $k = 2$ and in $\dot{B}^{1/3,1}_2(\mathbb{R})$ if $k = 3$. More precisely, for $k \geq 4$, we have the following results (see below for the definition of the spaces X and X_1).

Theorem 1.1. Let $k \geq 4$. There exists $\delta = \delta(k) > 0$ such that for all $u_0 \in \dot{B}^{s_k,1}_2(\mathbb{R})$ with $\|u_0\|_{\dot{B}^{s_k,1}_2} \leq \delta$, there exists a unique solution u of (GBO) in

$$X \cap C_b(\mathbb{R}, \dot{B}^{s_k,1}_2(\mathbb{R})).$$

Moreover, for any $T > 0$ and any $r \in [k, 3k]$, u belongs to $L^r_t L^r_x([-T, +T], \mathbb{R})$ and the flow-map is smooth from $\dot{B}^{s_k,1}_2(\mathbb{R})$ to $C_b(\mathbb{R}, \dot{B}^{s_k,1}_2(\mathbb{R}))$ near the origin.

Theorem 1.2. Let be $k \geq 4$ and $s > s_k$. There exists $\delta = \delta(k) > 0$ such that for all $u_0 \in H^s(\mathbb{R})$ with $\|u_0\|_{\dot{B}^{s_k,1}_2} \leq \delta$, there exists a unique solution u of (GBO) in

$$X_1 \cap C_b(\mathbb{R}, H^s(\mathbb{R})).$$

Moreover, for any $T > 0$ and any $r \in [2, 3k]$, u belongs to $L^r_t L^r_x([-T, +T], \mathbb{R})$ and the flow-map is smooth from $H^s(\mathbb{R})$ to $C([-T, +T], H^s(\mathbb{R}))$ near the origin.

Remark 1. This approach seems to be quite general. The same results hold for the 1-D derivative Schrödinger equations. Also, in a forthcoming paper, we prove by the same way well-posedness results for the generalized KdV equation in larger spaces than the critical homogeneous Sobolev spaces H^{s_k}, $s_k = (k - 4)/(2k)$, $k \geq 4$, see [4]. See also [5] for applications to nonlinear wave equation.

1.1. Sketch of the proofs

We solve (GBO) via the contraction method applied to the integral equation

$$u = V(t)u_0 - \int_0^t V(t - t')\partial_x(u^{k+1}(t')) \, dt',$$

where $V(t)$ denotes the operator with symbol $e^{i|\xi|^k\xi}$. We assume that $k \geq 4$ and that $u_0 \in \dot{B}^{s_k,1}_2(\mathbb{R})$, this case being the most interesting, see [3] for details and further results. We work in the space–time Lebesgue spaces $L^1_t L^2_x$ and $L^2_t L^1_x$. Sometimes we also use their local in time versions $L^1_t L^2_x$ and $L^2_t L^1_x$. Next we need to consider Δ_j and
Recall the sharp Kato smoothing effect, the maximal in time inequality and the following lemma, see [2].

\[\| D_\Delta^{1/2} V(t) \|_{L^\infty_t L^p_x} \leq C \| f \|_{L^2}, \quad \| V(t) f \|_{L^1_t L^\infty_x} \leq C \| D_\Delta^{1/4} f \|_{L^2}. \]

\begin{align}
\text{Lemma 1.3.} \quad & V(t) \Delta_j f \|_{L^\infty_t L^p_x} \leq C \| \Delta_j f \|_{L^2}, \quad 2^{-j/2} \| V(t) \Delta_j f \|_{L^\infty_t L^2_x} \leq C \| \Delta_j f \|_{L^2}, \\
& \int_0^t V(t - t') \partial_x \Delta_j h(t') \, dt' \|_{L^\infty_t L^2_x} \leq C \| \Delta_j h \|_{L^1_t L^2_x}.
\end{align}

We state now new linear estimates for phase localized functions.

\begin{align}
\text{Lemma 1.4.} \quad & \| V(t) \Delta_j f \|_{L_t^p L_x^q} \leq C 2^{j(1/2 - 1/p_1 - 2/q_1)} \| \Delta_j f \|_{L^2}, \\
& 2^{-j(1/2 - 1/p_1 - 2/q_1)} \int_0^t \| V(t - t') \partial_x \Delta_j h(t') \, dt' \|_{L_t^{p_1} L_x^{q_1}} \leq C 2^{j(1/2 - 1/p_2 - 2/q_2)} \| \Delta_j h \|_{L_t^{p_2} L_x^{q_2}}.
\end{align}

Moreover

\[\int_0^t \| V(t - t') \partial_x \Delta_j h(t') \, dt' \|_{L^\infty_t L^2_x} \leq C 2^{j/2} \| \Delta_j h \|_{L^1_t L^2_x}. \]

Proof. From (5) together with Riesz–Thorin theorem we obtain

\[\| \partial_x^a V(t) \Delta_j f \|_{L_t^{1/1 + a} L_x^2} \leq C 2^{j(\alpha + (1 - 3\theta)/4)} \| f \|_{L^2}, \quad 0 \leq \theta \leq 1, \]

and (8) follows from Sobolev embedding theorems. By duality (8) yields

\[2^{-j(1/2 - 1/p_1 - 2/q_1)} \int_{-\infty}^{+\infty} \| V(t - t') \partial_x \Delta_j h(t') \, dt' \|_{L_t^{p_1} L_x^{q_1}} \leq C 2^{j(1/2 - 1/p_2 - 2/q_2)} \| \Delta_j h \|_{L_t^{p_2} L_x^{q_2}}. \]

Then a suitable modification of the Christ–Kiselev lemma enables us to deduce (9) from (11). Next, by (6), \(\| \partial_x V(t) \Delta_j f \|_{L^\infty_t L^2_x} \leq C 2^{j/2} \| f \|_{L^2} \) and by duality

\[\int_{-\infty}^{+\infty} \| V(t - t') \partial_x \Delta_j h(t') \, dt' \|_{L^\infty_t L^2_x} \leq C 2^{j/2} \| \Delta_j h \|_{L^1_t L^2_x}. \]

This proves (10) since \(V(t) \) is a unitary group in \(L^2(\mathbb{R}) \).
Let us introduce our resolution spaces. Consider the following norms:
\[N(u) = \sum_{r=-\infty}^{+\infty} 2^{j/2} \| \Delta_j u \|_{L^2_b L^r_t}^2, \quad T(u) = \sum_{r=-\infty}^{+\infty} 2^{j/2} \| \Delta_j u \|_{L^2_b L^\infty_t}^2 \]
\[M(u) = \sum_{r=-\infty}^{+\infty} \| \Delta_j u \|_{L^2_b L^r_t}^2, \quad \| u \|_X = N(u) + T(u) + M(u) \]
and let \(X \) be the completion of \(S(\mathbb{R}^2) \) with respect to \(\| \cdot \|_X \). From (6) and (8) with \((p_1, q_1) = (k, +\infty) \),
\[
\| V(t) u_0 \|_X \leq C \| u_0 \|_{B^k_2 L^1_2}.
\] (13)

Now from (7), (9) with \((p_1, q_1) = (k, +\infty) \) and \((p_2, q_2) = (\infty, 2) \) and (10),
\[
\| \int_0^t V(t-t') \partial_t u^{k+1}(t') \, dt' \|_X \leq C \sum_{j=-\infty}^{+\infty} 2^{j/2} \| \Delta_j u^k \|_{L^2_b L^2_t}.
\] (14)

Using a standard argument we can assume that \(\Delta_j u^k = \sum_{r \geq j} \Delta_r u^k(S_r u)^k \) and by Hölder inequality this allows to bound the right-hand side of (14) by
\[
\sum_{r \geq j} 2^{j/2} \| \Delta_r u \|_{L^2_b L^1_t} \| S_r u \|_{L^2_b L^\infty_t}^k.
\] (15)

Note that \(\| \Delta_r u \|_{L^2_b L^1_t} \leq C 2^{-r(\alpha+1/2)} \gamma_r \) with \(\| \gamma_r \|_\mu \leq C T(u) \) and that \(\| S_r u \|_{L^2_b L^\infty_t} \leq C \sum_{p \leq r} \| \Delta_p u \|_{L^2_b L^\infty_t} \leq C M(u) \).
Hence from (15) and discrete Young inequalities we obtain
\[
\| \int_0^t V(t-t') \partial_t u^{k+1}(t') \, dt' \|_X \leq C T(u) M(u)^k.
\] (16)

Once estimates (13) and (16) have been derived the proof of the existence and uniqueness part of Theorem 1.1 easily follows. In the same way, according to estimate (9), \((2^{(\alpha-1)/2} + 1/p + 2/q) \| \Delta_j u \|_{L^2_{r,q} \mathbb{Z}} \in l^1(\mathbb{Z}) \) for \(1/q < 1/2 - 2/p \). Hence the low frequencies part of \(u \) belongs to \(L^r_{r,q} \mathbb{Z} \) for \(r \geq k \) and the high frequencies part of \(u \) belongs to \(L^r_{r,q} \mathbb{Z} \) for \(r \leq 3k \). Thus \(u \) belongs to \(L^r_{r,q} \mathbb{Z}, r \in [k, 3k] \). For \(u_0 \in H^s(\mathbb{R}) \) small enough in \(B^k_{2,1}(\mathbb{R}) \), we solve (GBO) in \(X_s \) defined trough the norm \(\| \cdot \|_{X_s} = \| \cdot \|_X + \lambda_0 \| \cdot \|_\mu \) where \(\lambda_0 = \| u_0 \|_{B^k_{2,1}} / \| u_0 \|_{H^s} \) and \(\| u \|_{Y_s} = \| (2^{j/2} \| \Delta_j u \|_{L^2_b L^2_r}) \|_{l^2(\mathbb{Z})} + \| (2^{j/2} \| \Delta_j u \|_{L^2_b L^\infty_r}) \|_{l^2(\mathbb{Z})} \). The proof is the same as previously up to some minor modifications.

For \(k = 2, 3 \) we use the estimates \(\| V(t) \Delta_j u_0 \|_{L^2_b L^2_r} \leq C(T) \| \Delta_j u_0 \|_{H^{1/2}}, \quad j \geq 0 \), and \(\| V(t) S_t u_0 \|_{L^2_b L^\infty_r} \leq C(T) \| S_t u_0 \|_{l^2} \), together with similar arguments to prove the local well-posedness. When \(k = 3 \) and \(s \geq 1/2 \), the global well-posedness result follows then from the conservation of the energy, \(E(u) = \int |D_x^{1/2} u|^2 - c_k u^{k+2} \, dx \).

References