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Abstract

The author has recently proved that a famous formula discovered by G. Parisi gives at any temperature the corr
for the limiting free energy of a large class of mean field models for spin glasses (a class which contains in partic
Sherrington–Kirkpatrick model). Here we prove rigorously that (generically) the “functional order parameter” occu
this formula can be interpreted as predicted by Parisi, namely as representing the limiting distribution of the overla
independent configurations.To cite this article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

La signification du paramètre fonctionnel d’ordre de Parisi. L’auteur a récemment démontré qu’une célèbre formule
G. Parisi donne effectivement à toute température la valeur correcte de l’énergie libre limite d’une large classe de m
verre de spin à champ moyen, classe contenant en particulier le modèle de Sherrington–Kirkpatrick. Cette formule fait
un « paramètre d’ordre fonctionnel » dont on démontre ici que (génériquement) la signification est celle prévue par l
de Parisi, à savoir qu’il représente la distribution limite du recouvrement de deux configurations indépendentes.Pour citer cet
article : M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

We consider independent standard normal r.v.gi1,...,ip for each integersp, i1, . . . , ip. Forσ ∈ΣN = {−1,1}N ,
we consider the Hamiltonian of thep-spin interaction model,

−HN,p(σ )=
√

p!
Np−1

∑
1�i1<...<ip�N

gi1,...,ipσi1 · · ·σip . (1)

Consider a sequenceβ = (βp)p�1 with ‖β‖2
2 = ∑

p�1β
2
p <∞ and the Hamiltonian

−HN,β(σ )=
∑
p�1

2−pβpHN,2p(σ )+ h
∑
i�N

σi . (2)
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Note is
and [3].
Here,h represents the strength of an external field, and is fixed once and for all. It is understood thatHN,2p = 0 if
2p >N . The term 2−p is to ensure convergence and has no special meaning. We define the function

ξβ(x)=
∑
p�1

2−2pβ2
px

2p.

A simple computation shows that (ifE denotes expectation in the r.v.gi1,...,ip ) we have, for two configurationsσ 1

andσ 2 that∣∣∣∣ 1

N
E
(
HN,β

(
σ 1)HN,β

(
σ 2)) − ξβ(R1,2)

∣∣∣∣ � c(N,β),

where c(N,β) → 0 asN → ∞ uniformly over every set{β; ‖β‖2 � C} and whereR1,2 = R1,2(σ
1,σ 2) =

N−1 ∑
i�N σ 1

i σ
2
i is the overlap of the configurationsσ 1 andσ 2.

We observe thatξ is infinitely differentiable, thatξβ(x) = ξβ(−x), that ξβ is convex and thatξ ′′
β (x) > 0 for

x > 0. Thus, as is proved in [4] we can use Parisi’s formula to compute limN→∞ N−1
E log

∑
σ exp(−HN,β(σ )).

This formula, that will be explained below, involves a “functional order parameter”, and the purpose of this
to provide a rigorous interpretation of this parameter. Background on spin glass models can be found in [2]

2. Statement of results

Consider an integerk � 1 and the setMk of all probability measures on[0,1] that are of the type

µ= 1

k

∑
1���k

δq� . (3)

We assume without loss of generality thatq1 � · · · � qk and we defineq0 = 0 andqk+1 = 1. Given a convex
functionξ onR, we consider the functionFk+1(x)= logch(x) and for 1� � � k we define recursively

F�(x)= 1

m�
logEexpm�F�+1

(
x + g

√
ξ ′(q�+1)− ξ ′(q�)

)
,

wherem� = �/k and whereg is standard normal. We define

F0(x)= EF1
(
x + g

√
ξ ′(q1)

)
(4)

andθ(x)= xξ ′(x)− ξ(x). It is simple to check that the quantity

P(ξ,µ)= log2+ F0(h)− 1

2
θ(0)+ 1

2

∫
θ(x)dµ(x)

depends only onµ and not on the representation (3). We provide the set of probability measuresM on [0,1] with
the weak* topology. The following extends an important result of Guerra [1], Theorem 1.

Proposition 2.1. The map µ �→ P(ξ,µ) is uniformly continuous on
⋃

k�1Mk and consequently it has a
continuous extension to M.

Of course we use the same notationP(ξ,µ) to denote this extension.

Corollary 2.2. There exists µξ ∈M such that P(ξ,µξ )= infµP(ξ,µ).
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c”

l
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The result of [4] can then be formulated as follows

Theorem 2.3.For each β there is µβ ∈M such that

lim
N→∞

1

N
E log

∑
σ

exp
(−HN,β(σ )

) =P(ξβ ,µβ)= inf
µ
P(ξβ ,µ). (5)

We will call a measureµβ that satisfies the last equality in (5) aParisi measure. The physicists think to this
object as a parameter which, when fixed at the appropriate value, allows the computation of the left-ha
of (5). The name “functional order parameter” arises from the identification of a probability measureµ with the
functionx �→ µ((0, x]).

The following two conjectures seem closely related to each other.

Conjecture 2.4.There is only one Parisi measure.

In words, we conjecture that the functionµ �→P(ξβ ,µ) attains its minimum at a unique point.

Conjecture 2.5.The map β �→P(ξβ ,µβ) is Gateaux differentiable at every point.

Since the left-hand side of (5) is a convex function ofβ, we also have

The functionβ �→ P(ξβ ,µβ) is convex. (6)

We do not know how to show this directly.

Definition 2.6.We say that a pointβ0 is regular if the mapβ �→P(ξβ ,µβ) is Gateaux differentiable at this poin

Conjecture 2.5 means that we expect that everyβ is regular. It follows classically from (6) that the “generi
pointβ is regular. We now fix an integers � 1 andβ. For t ∈ R we consider the pointβ(t) obtained by replacing
the coordinateβs by βs + t . We writeξt instead ofξβ(t).

Proposition 2.7.For every measure µ ∈ M the map t �→ P(ξt ,µ) is differentiable. Moreover, if µ is a Parisi
measure µβ , the value of the derivative at t = 0 is 2−2sβs(1− ∫

x2s dµ(x)).

Theorem 2.8.If the point β is regular, then

∀s, βs �= 0 ⇒ lim
N→∞ E

〈
R2s

1,2

〉 =
∫

x2s dµβ(x), (7)

where 〈·〉 denotes an average on Σ2
N for the Gibbs measure with Hamiltonian (2).

As a consequence of (7) we can state that, provided thatβ is regular andβs �= 0 for eachs, the limiting
distribution ofR2

1,2 is the image ofµβ under the mapx �→ x2. We observe that whenh = 0 there is globa
symmetry around 0 so that the law ofR1,2 is symmetric around 0, so thatµ cannot be the limiting distribution o
R1,2 unless it is concentrated at 0 (the high-temperature case). However we have the following.

Proposition 2.9.If h > 0 then limN→∞ E〈1{R1,2�0}〉 = 0.

As a consequence of this result and of Theorem 2.8, we see that whenh > 0, and provided thatβs �= 0 for
eachs, the measureµβ is the limiting distribution ofR1,2. This provides the desired interpretation of the Pa
measureµβ .
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Proof of Theorem 2.8. Consider the functionf (t) = P(ξt ,µβ(t)). Since we assume thatβ is regular, this
function is differentiable att = 0. Sinceµβ(t) is a Parisi measure forξt we havef (t) � g(t) := P(ξt ,µβ). By
Proposition 2.7, the functiong is differentiable att = 0, so that

f ′(0)= g′(0)= 2−2sβs

(
1−

∫
x2s dµβ(x)

)
. (8)

Consider now the functionsfN(t)=N−1
E log

∑
σ exp(−HN,β(t)(σ )). By a standard computation, we have

f ′
N(t)= 2−2sβs

(
1− E

〈
R2s

1,2

〉
t

) + εN, (9)

whereεN goes to zero whenN → ∞, uniformly at t bounded, and where〈·〉t denotes an average onΣ2
N for the

Gibbs measure with HamiltonianHN,β(t). Since the functionst �→ fN(t) are convex, and since their limitf (t)
is differentiable att = 0, we have thatf ′(0) = limN→∞ f ′

N(0), and combining with (7) and (8) concludes t
proof. ✷

One can hope that a simple underlying structure exists, that will obviate Conjectures 2.4 and 2.5. In the m
however, the key point of the proofs of Propositions 2.1 and 2.7 is that, even though the definition ofF0(x) in (4)
involves a very large number of steps whenr is large, the quantities of importance (such asF ′′

0 ) can be controlled
independently of this number of steps, a fact that is already crystal clear in the formulation of Theorem 1
and that played a key role in the proofs of [4]. Proposition 2.9 is a consequence of the methods of [4].

One might wonder whether (as suggested by physical intuition) the measureµβ completely describes th
asymptotic properties of the system. If this is the case, one should be able to compute all the relevant
quantities of the system in function of it, and in particular quantities of the following type

lim
N→∞ E〈R1,2R1,3〉,
lim

N→∞ E〈R1,2R3,4〉 = lim
N→∞ E〈R1,2〉2,

where we have introduced two more replicasσ 3 andσ 4, and where of courseR2,3 =N−1 ∑
i�N σ 2

i σ
3
i . The author

feels this is a very interesting research program.
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