

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 337 (2003) 593-596

Algebraic Geometry

Abelian fibrations on $S^{[n]}$

Baohua Fu

Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis, parc Valrose, 06108 Nice cedex 02, France

Received 5 June 2003; accepted 15 September 2003

Presented by Jean-Pierre Demailly

Abstract

Let $S \xrightarrow{\phi} \mathbb{P}^1$ be an elliptic fibration on a K3 surface S. Then the composition $S^{[n]} \xrightarrow{\pi} S^{(n)} \xrightarrow{\text{sym}^n \phi} \mathbb{P}^n$ gives an Abelian fibration on $S^{[n]}$. Let E be the exceptional divisor of π , then symⁿ $\phi \circ \pi(E)$ is of dimension n-1. We prove the inverse in this Note. To cite this article: B. Fu, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Fibrations abéliennes sur $S^{[n]}$. Soit $S \xrightarrow{\phi} \mathbb{P}^1$ une fibration elliptique sur une surface S, K3. Alors la composition $S^{[n]} \xrightarrow{\pi} S^{(n)} \xrightarrow{\operatorname{sym}^n \phi} \mathbb{P}^n$ donne une fibration abélienne sur $S^{[n]}$. Soit *E* le diviseur exceptionel de π , alors $\operatorname{sym}^n \phi \circ \pi(E)$ est de dimension n-1. Dans cette Note, nous démontrons la réciproque. Pour citer cet article : B. Fu, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Let X be a 2n-dimensional irreducible symplectic manifold. Recall that an Abelian fibration on X is a proper surjective morphism $X \to \mathbb{P}^n$ whose generic fiber is a smooth Abelian variety. This is more or less the only non trivial fibration structure that could exist on X, owing to a result of Matsushita [5]. To understand Abelian fibrations on holomorphic symplectic manifolds is one of three-part programme to understand the mysteries of holomorphic symplectic manifolds (see, for example, [7]).

As remarked by Hassett and Tschinkel (Remark 5.6, [2]), the existence of an Abelian fibration on the Hilbert scheme $S^{[2]}$ of a K3 surface S does not imply that S admits an Abelian fibration, i.e., it does not imply that S is an elliptic K3 (compare [4]). A classical example is the following (communicated to the author by A. Beauville): let $S \subset \mathbb{P}^5$ be the intersection of three quadrics $Q_1 = 0$, $Q_2 = 0$ and $Q_3 = 0$, which does not contain any line. If we take a general such S, then Pic(S) has rank 1, thus it contains no non-trivial divisor with zero self-intersection, i.e., S is not elliptic. An Abelian fibration on $S^{[2]}$ can be constructed as follows: any point $I \in S^{[2]}$ defines a line

E-mail address: baohua.fu@polytechnique.org (B. Fu).

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

in \mathbb{P}^5 , which is not contained in *S*. Then there exists a unique plan in $V = \mathbb{C}\langle Q_1, Q_2, Q_3 \rangle$ which vanishes on this line. This gives an Abelian fibration: $S^{[2]} \to \mathbb{P}(V^*) \simeq \mathbb{P}^2$.

The purpose of this Note is to study Abelian fibrations on $S^{[n]}$. If S is elliptic, i.e., there exists an elliptic fibration $\phi: S \to \mathbb{P}^1$, then the composition,

 $S^{[n]} \xrightarrow{\pi} S^{(n)} \xrightarrow{\operatorname{sym}^n \phi} \operatorname{Sym}^n \mathbb{P}^1 \simeq \mathbb{P}^n,$

gives an Abelian fibration on $S^{[n]}$. If we denote by $E \subset S^{[n]}$ the exceptional divisor of π , then the image of E by $sym^n(\phi) \circ \pi$ is of dimension n-1 in \mathbb{P}^n . Our aim of this Note is to prove the inverse.

Theorem 1.1. Let $S^{[n]} \xrightarrow{f} \mathbb{P}^n$ be an Abelian fibration on $S^{[n]}$. Suppose that $\dim(f(E)) \leq n-1$, then S is elliptic and f is isomorphic to an Abelian fibration coming from an elliptic fibration $S \xrightarrow{\phi} \mathbb{P}^1$.

2. Abelian varieties contained in products of K3 surfaces

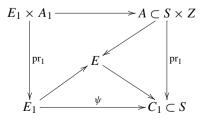
Lemma 2.1. Let A be an Abelian variety and S a K3 surface. Then there exists no surjective morphism from A to S.

Proof. Suppose we had a surjective morphism $f: A \to S$. By Stein factorization, there exist a normal surface B, a finite morphism $f_1: B \to S$ and a morphism with connected fibers $f_2: A \to B$ such that $f = f_1 \circ f_2$. Notice that f_2 has connected fibers, so by the rigidity lemma [6], there exists an Abelian subvariety A_0 of A, such that $f_2^{-1}(f_2(a)) = a + A_0$ for any $a \in A$. This implies that B is isomorphic to A/A_0 , thus it is an Abelian surface.

 $f_2^{-1}(f_2(a)) = a + A_0$ for any $a \in A$. This implies that *B* is isomorphic to A/A_0 , thus it is an Abelian surface. Now consider the finite morphism $f_1: B \to S$, which induces $f_{1*}f_1^* = \deg(f_1)$ Id in cohomology. Thus $f_1^*: H^2(S, \mathbb{R}) \to H^2(B, \mathbb{R})$ is injective, this gives $b_2(S) \leq b_2(B)$, which is absurd since $b_2(S) = 22$ and $b_2(B) = 6$. \Box

Lemma 2.2. Let A be an Abelian variety contained in the product $S \times Z$, where S is a K3 surface and Z an algebraic variety. Then either A is contained in $\{p\} \times Z$ for some point $p \in S$ or A is isogeny to $E_1 \times A_1$, where E_1 is an elliptic curve and A_1 is an Abelian variety contained in $\{p'\} \times Z$ for some point $p' \in S$.

Proof. Consider the projection $pr_1 : A \subseteq S \times Z \to S$. If $Img(pr_1)$ is just a point $p \in S$, then A is contained in $\{p\} \times Z$. If $Img(pr_1)$ is not a point, it is a curve $C_1 \subseteq S$, by the above lemma. Now by the Stein factorization, there exist a normal curve E, a finite morphism $E \to C_1$ and a morphism with connected fibers $A \to E$. The argument in the proof of Lemma 2.1 shows that E is an elliptic curve. Now by Poincaré's theorem on complete reducibility, there exist an elliptic curve E_1 , a finite morphism $E_1 \to E$ and an Abelian variety A_1 , such that A is isogeny to $E_1 \times A_1$ and the following diagram commutes:



If we take the identity point $e \in E_1$, then $\{e\} \times A_1$ is contained in $\operatorname{pr}_1^{-1}(\psi(e)) \subset \{\psi(e)\} \times Z$, thus we can chose A_1 such that A_1 is contained in $\{p'\} \times Z$ for some point $p' \in S$. \Box

Theorem 2.3. Let A be a k-dimensional Abelian variety contained in a product of K3 surfaces $S_1 \times \cdots \times S_n$. Then A is isomorphic to a product of elliptic curves $E_1 \times \cdots \times E_k$, with $E_i \subset S_{k_i}$.

Proof. Applying the above lemma, an induction argument shows that A is isogeny to a product of elliptic curves $E_1 \times \cdots \times E_k$. Re-ordering the index if necessary, we can suppose that E_i projects onto a curve C_i on S_i . The above lemma also shows that E_k can be chosen on S_k . Now we show that E_{k-1} can also be chosen to be an elliptic curve on S_{k-1} .

Let *B* be the Abelian surface contained in $S_{k-1} \times S_k$, which is the image of $E_{k-1} \times E_k$. Applying Lemma 2.2 with $S = S_k$ and $Z = S_{k-1}$, then we can chose E_{k-1} to be a curve on S_{k-1} . Now the projection curve C_{k-1} (resp. C_k) should be E_{k-1} (resp. E_k), thus *B* is isomorphic to $E_{k-1} \times E_k$.

An induction with the above arguments concludes the proof. \Box

Remark 1. It is proved by Hwang and Mok (see [3]) that if $B \to S$ is a finite morphism from an Abelian surface to a projective surface *S*, then *S* is either an Abelian surface, a \mathbb{P}^1 -bundle over a curve or \mathbb{P}^2 . Using this result and above arguments, the theorem still holds if we replace *K*3 surfaces *S_i* by surfaces which is neither an Abelian surface, a \mathbb{P}^1 -bundle over a curve nor \mathbb{P}^2 .

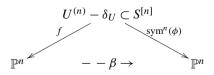
3. Proof of Theorem 1.1

Let *A* be a general fiber of *f*, which is an Abelian variety. By hypothesis, dim $(f(E)) \leq n-1$, *A* is contained in $S^{[n]} - E$, and the latter can be identified with $S^{(n)} - \delta$, where δ is the big diagonal. Notice that $q : S^n - \Delta \rightarrow S^{(n)} - \delta$ is an unbranched covering of order *n*, where Δ is the preimage of δ in S^n . Then $q^{-1}(A)$ is an unbranched covering of *A* of order *n*. Let A_1 be any connected component of $q^{-1}(A)$, which is still an Abelian variety, contained in S^n .

Now by our Theorem 2.3, A_1 is isomorphic to products $E_1 \times \cdots \times E_n$, where E_i are elliptic curves on S. Notice that $A \cap \delta = \emptyset$, thus E_i and E_j have no common points if $i \neq j$, thus E_i , i = 1, ..., n, are fibers of an elliptic fibration $\phi : S \to \mathbb{P}^1$. In particular, S is elliptic.

Take another general fiber of f, then the arguments above give another elliptic pencil on S with fibers E'_i , i = 1, ..., n. If $E'_{i_0} \cdot E_{j_0} \neq 0$, then $E'_i \cdot E_j \neq 0$ for any i, j, thus there exists a point $(x_1, ..., x_n) \in E_1 \times \cdots \times E_n \cap E'_1 \times \cdots \times E'_n$, which contradicts to the fact that the intersection of two fibers is empty. Thus E'_i , i = 1, ..., n, are all fibers of $\phi : S \to \mathbb{P}^1$, i.e., all elliptic fibrations defined in this way on S are the same.

This implies that there exists an open set $U = S - \phi(W)$ for some closed subvariety $W \subset \mathbb{P}^1$ such that every fiber of the composition $U^n - \Delta_U \to U^{(n)} - \delta_U \xrightarrow{f} \mathbb{P}^n$ is an Abelian variety, thus it is of the form $\phi^{-1}(x_1) \times \cdots \times \phi^{-1}(x_n)$. This gives a birational automorphism $\beta : \mathbb{P}^n \to \mathbb{P}^n$, such that the following diagram commutes:



Thus the two birational morphisms $\operatorname{sym}^{n}(\phi): S^{[n]} \to \mathbb{P}^{n}$ and $\beta \circ f: S^{[n]} - \to \mathbb{P}^{n}$ agree over an open set of $S^{[n]}$, which shows $\beta \circ f = \operatorname{sym}^{n}(\phi)$ over the whole of $S^{[n]}$. In particular, $\beta: \mathbb{P}^{n} \to \mathbb{P}^{n}$ is a birational morphism, thus an isomorphism, which concludes the theorem. \Box

4. Another proof

Here we want to give a quick proof of the following part of Theorem 1.1, which is communicated to the author by A. Beauville.

Theorem 4.1. Let $S^{[n]} \xrightarrow{f} \mathbb{P}^n$ be an Abelian fibration on $S^{[n]}$. Suppose that dim $(f(E)) \leq n-1$, then S is elliptic.

Proof. Let $q_S(-)$ be the Beauville–Bogomolov form on holomorphic symplectic varieties. Then we have $\operatorname{Pic}(S^{[n]}) \simeq \operatorname{Pic}(S) \oplus \mathbb{Z} \cdot [E/2]$ which is also orthogonal with respect to the quadric form $q_S(-)$ (see [1]). Take a hyperplane class h on \mathbb{P}^n . By Fujiki's formula, we have $[q_S(E + tf^*h)]^n = c_n(E + tf^*h)^{2n}$ for some constant c_n . Notice that $q_S(E + tf^*h) = q_S(E) + 2tq_S(E, f^*h)$, then by comparing the coefficient of t^n , we have $q_S(f^*h, E) = cE^n \cdot (f^*h)^n$ for some constant c. Notice that $(f^*h)^n$ is nothing but fibers of the fibration f. By hypothesis $\dim(f(E)) \leq n - 1$, the general fibers have empty intersection with E, thus $q_S(f^*h, E) = cE^n \cdot (f^*h)^n = 0$. This implies that $f^*h \in \operatorname{Pic}(S^{[n]})$ comes from some divisor D on S. Furthermore, $D \cdot D = q_S(f^*h) = 0$, thus S is elliptic. \Box

Acknowledgements

The author wants to thank A. Beauville, his thesis advisor, for many helpful discussions.

References

- [1] A. Beauville, Variétés dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755-782.
- [2] B. Hassett, Y. Tschinkel, Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal. 11 (6) (2001) 1201–1228.
- [3] J.-M. Hwang, N. Mok, Projective manifolds dominated by Abelian varieties, Math. Z. 238 (2001) 89-100.
- [4] D.G. Markushevich, Integrable symplectic structures on compact complex manifolds, Math. USSR-Sb. 59 (2) (1988) 459-469.

[5] D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1) (1999) 79-83.

- [6] D. Mumford, Abelian Varieties. With Appendices by C.P. Ramanujam and Yuri Manin, 2nd edition, in: Reprint. Stud. Math., Vol. 5, Tata Institute of Fundamental Research, Bombay, 1985, Oxford etc.: Oxford University Press.
- [7] J. Sawon, Abelian fibred holomorphic symplectic manifolds, Turkish J. Math. 27 (1) (2003) 197-230.

596