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Abstract

LetS
φ→P1 be an elliptic fibration on aK3 surfaceS. Then the compositionS[n] π→S(n) symnφ−−−−→Pn gives an Abelian fibration

onS[n]. LetE be the exceptional divisor ofπ , then symnφ ◦ π(E) is of dimensionn− 1. We prove the inverse in this Note.To
cite this article: B. Fu, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Fibrations abéliennes sur S[n]. Soit S
φ→P1 une fibration elliptique sur une surfaceS, K3. Alors la composition

S[n] π→S(n) symnφ−−−−→Pn donne une fibration abélienne surS[n]. Soit E le diviseur exceptionel deπ , alors symnφ ◦ π(E) est
de dimensionn − 1. Dans cette Note, nous démontrons la réciproque.Pour citer cet article : B. Fu, C. R. Acad. Sci. Paris,
Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Let X be a 2n-dimensional irreducible symplectic manifold. Recall that anAbelian fibrationon X is a proper
surjective morphismX → Pn whose generic fiber is a smooth Abelian variety. This is more or less the only
trivial fibration structure that could exist onX, owing to a result of Matsushita [5]. To understand Abelian fibrati
on holomorphic symplectic manifolds is one of three-part programme to understand the mysteries of holo
symplectic manifolds (see, for example, [7]).

As remarked by Hassett and Tschinkel (Remark 5.6, [2]), the existence of an Abelian fibration on the
schemeS[2] of a K3 surfaceS does not imply thatS admits an Abelian fibration, i.e., it does not imply thatS is
an ellipticK3 (compare [4]). A classical example is the following (communicated to the author by A. Beau
let S ⊂ P5 be the intersection of three quadricsQ1 = 0, Q2 = 0 andQ3 = 0, which does not contain any line.
we take a general suchS, then Pic(S) has rank 1, thus it contains no non-trivial divisor with zero self-intersec
i.e.,S is not elliptic. An Abelian fibration onS[2] can be constructed as follows: any pointI ∈ S[2] defines a line
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in P5, which is not contained inS. Then there exists a unique plan inV = C〈Q1,Q2,Q3〉 which vanishes on thi
line. This gives an Abelian fibration:S[2] → P(V ∗) � P2.

The purpose of this Note is to study Abelian fibrations onS[n]. If S is elliptic, i.e., there exists an elliptic fibratio
φ :S → P1, then the composition,

S[n] π→S(n) symnφ−−−−→ Symn
P

1 � P
n,

gives an Abelian fibration onS[n]. If we denote byE ⊂ S[n] the exceptional divisor ofπ , then the image ofE by
symn(φ) ◦ π is of dimensionn − 1 in Pn. Our aim of this Note is to prove the inverse.

Theorem 1.1. Let S[n] f→Pn be an Abelian fibration onS[n]. Suppose thatdim(f (E)) � n − 1, thenS is elliptic

andf is isomorphic to an Abelian fibration coming from an elliptic fibrationS
φ→P1.

2. Abelian varieties contained in products of K3 surfaces

Lemma 2.1. Let A be an Abelian variety andS a K3 surface. Then there exists no surjective morphism fromA

to S.

Proof. Suppose we had a surjective morphismf :A → S. By Stein factorization, there exist a normal surfaceB,
a finite morphismf1 :B → S and a morphism with connected fibersf2 :A → B such thatf = f1 ◦ f2. Notice
thatf2 has connected fibers, so by the rigidity lemma [6], there exists an Abelian subvarietyA0 of A, such that
f −1

2 (f2(a)) = a + A0 for anya ∈ A. This implies thatB is isomorphic toA/A0, thus it is an Abelian surface.
Now consider the finite morphismf1 :B → S, which inducesf1∗f ∗

1 = deg(f1) Id in cohomology. Thus
f ∗

1 :H 2(S,R) → H 2(B,R) is injective, this givesb2(S) � b2(B), which is absurd sinceb2(S) = 22 and
b2(B) = 6. ✷
Lemma 2.2. Let A be an Abelian variety contained in the productS × Z, whereS is a K3 surface andZ an
algebraic variety. Then eitherA is contained in{p} × Z for some pointp ∈ S or A is isogeny toE1 × A1, where
E1 is an elliptic curve andA1 is an Abelian variety contained in{p′} × Z for some pointp′ ∈ S.

Proof. Consider the projection pr1 : A ⊂ S × Z → S. If Img(pr1) is just a pointp ∈ S, thenA is contained in
{p} ×Z. If Img(pr1) is not a point, it is a curveC1 ⊂ S, by the above lemma. Now by the Stein factorization, th
exist a normal curveE, a finite morphismE → C1 and a morphism with connected fibersA → E. The argumen
in the proof of Lemma 2.1 shows thatE is an elliptic curve. Now by Poincaré’s theorem on complete reducib
there exist an elliptic curveE1, a finite morphismE1 → E and an Abelian varietyA1, such thatA is isogeny to
E1 × A1 and the following diagram commutes:

E1 × A1

pr1

A ⊂ S × Z

pr1E

E1
ψ

C1 ⊂ S

If we take the identity pointe ∈ E1, then{e} × A1 is contained in pr−1
1 (ψ(e)) ⊂ {ψ(e)} × Z, thus we can chos

A1 such thatA1 is contained in{p′} × Z for some pointp′ ∈ S. ✷
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Theorem 2.3. LetA be ak-dimensional Abelian variety contained in a product ofK3 surfacesS1 ×· · ·×Sn. Then
A is isomorphic to a product of elliptic curvesE1 × · · · × Ek, withEi ⊂ Ski .

Proof. Applying the above lemma, an induction argument shows thatA is isogeny to a product of elliptic curve
E1 × · · · × Ek. Re-ordering the index if necessary, we can suppose thatEi projects onto a curveCi on Si . The
above lemma also shows thatEk can be chosen onSk . Now we show thatEk−1 can also be chosen to be an ellip
curve onSk−1.

Let B be the Abelian surface contained inSk−1 × Sk , which is the image ofEk−1 × Ek . Applying Lemma 2.2
with S = Sk andZ = Sk−1, then we can choseEk−1 to be a curve onSk−1. Now the projection curveCk−1 (resp.
Ck) should beEk−1 (resp.Ek), thusB is isomorphic toEk−1 × Ek .

An induction with the above arguments concludes the proof.✷
Remark 1. It is proved by Hwang and Mok (see [3]) that ifB → S is a finite morphism from an Abelian surfac
to a projective surfaceS, thenS is either an Abelian surface, aP1-bundle over a curve orP2. Using this result
and above arguments, the theorem still holds if we replaceK3 surfacesSi by surfaces which is neither an Abelia
surface, aP1-bundle over a curve norP2.

3. Proof of Theorem 1.1

LetA be a general fiber off , which is an Abelian variety. By hypothesis, dim(f (E)) � n−1,A is contained in
S[n] −E, and the latter can be identified withS(n)−δ, whereδ is the big diagonal. Notice thatq :Sn−∆ → S(n)−δ

is an unbranched covering of ordern, where∆ is the preimage ofδ in Sn. Thenq−1(A) is an unbranched coverin
of A of ordern. LetA1 be any connected component ofq−1(A), which is still an Abelian variety, contained inSn.

Now by our Theosrem 2.3,A1 is isomorphic to productsE1 × · · · × En, whereEi are elliptic curves onS.
Notice thatA ∩ δ = ∅, thusEi andEj have no common points ifi �= j , thusEi, i = 1, . . . , n, are fibers of an
elliptic fibrationφ :S → P1. In particular,S is elliptic.

Take another general fiber off , then the arguments above give another elliptic pencil onS with fibers
E′

i , i = 1, . . . , n. If E′
i0

· Ej0 �= 0, then E′
i · Ej �= 0 for any i, j , thus there exists a point(x1, . . . , xn) ∈

E1 × · · · × En ∩ E′
1 × · · · × E′

n, which contradicts to the fact that the intersection of two fibers is empty. T
E′

i , i = 1, . . . , n, are all fibers ofφ :S → P1, i.e., all elliptic fibrations defined in this way onS are the same.
This implies that there exists an open setU = S − φ(W) for some closed subvarietyW ⊂ P1 such that

every fiber of the compositionUn − ∆U → U(n) − δU
f→Pn is an Abelian variety, thus it is of the form

φ−1(x1) × · · · × φ−1(xn). This gives a birational automorphismβ : Pn− → Pn, such that the following diagram
commutes:

U(n) − δU ⊂ S[n]
f symn(φ)

Pn − − β → Pn

Thus the two birational morphisms symn(φ) :S[n] → Pn andβ ◦ f : S[n] − − → Pn agree over an open set
S[n], which showsβ ◦ f = symn(φ) over the whole ofS[n]. In particular,β :Pn → P

n is a birational morphism
thus an isomorphism, which concludes the theorem.✷
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4. Another proof

Here we want to give a quick proof of the following part of Theorem 1.1, which is communicated to the
by A. Beauville.

Theorem 4.1. LetS[n] f→Pn be an Abelian fibration onS[n]. Suppose thatdim(f (E)) � n− 1, thenS is elliptic.

Proof. Let qS(−) be the Beauville–Bogomolov form on holomorphic symplectic varieties. Then we
Pic(S[n]) � Pic(S) ⊕ Z · [E/2] which is also orthogonal with respect to the quadric formqS(−) (see [1]). Take a
hyperplane classh onPn. By Fujiki’s formula, we have[qS(E + tf ∗h)]n = cn(E + tf ∗h)2n for some constantcn.
Notice thatqS(E+ tf ∗h) = qS(E)+2tqS(E,f ∗h), then by comparing the coefficient oftn, we haveqS(f ∗h,E) =
cEn · (f ∗h)n for some constantc. Notice that(f ∗h)n is nothing but fibers of the fibrationf . By hypothesis
dim(f (E)) � n− 1, the general fibers have empty intersection withE, thusqS(f ∗h,E) = cEn · (f ∗h)n = 0. This
implies thatf ∗h ∈ Pic(S[n]) comes from some divisorD on S. Furthermore,D · D = qS(f

∗h) = 0, thusS is
elliptic. ✷
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