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Abstract

The paper concerns existence of exact solutions of the Dubreil-Jacotin—-Long equation describing large amplitude internal
fronts in a continuously stratified fluid. The proof uses cosymmetric variant of the implicit function theorem based on the group
invariance of the variational functional for DJL operator. Supercritical branching occurs near approximate front solutions at
the boundary of continuous spectrum of the problem linearized with respect to the basic uniforMofiote this article:
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Résumé
Cosymétrie équivarianteet solutions«fronts» del’ équation de Dubr eil-Jacotin—L ong. 2eéme partie: Solutionsexactes.
Cette Note traite de I'existence de solutions exactes de I'équation de Dubreil-Jacotin—Long (DJL), qui décrivent les fronts
internes de grande amplitude dans un fluide continment stratifié. La démonstration utilise une variante du théoréeme des
fonctions implicites en présence d’'une cosymétrie, basée sur le groupe d’invariance de la fonctionnelle variationnelle de
I'opérateur de DJL. Une bifurcation supercritique a lieu au bord du spectre continu du probleme linéarisé au voisinage de

I’écoulement primairePour citer cet article: N. Makarenko, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
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1. Introduction

In this Note we prove the existence of exact front solutions of DJL equation in weighted Sobolev spaces near
the approximate solutions constructed in the Part 1 by scaling with small Boussinesq parameter. We apply here
the modified Lyapunov—Schmidt procedure which is similar to the method suggested in the paper Beale [1] for
the problem on surface solitary wave. The cosymmetry arguments are used to satisfy the orthogonality condition
which appears due to the dissymmetry of the front-like flow. We refer to formulae (n) from the first part of the
paper by notation I(n) everywhere in the text.
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2. Nonlinear maps associated with DJL operator
We consider the front problem for DJL equation in the steip=R x (0, )

F(v;0,2) €0 (o) + (0v,)y — 40'v — f(0, Vo, y;0) =0, (x,y) € 2, (1)
@ v(x,0 =v(x,7)=0; b)v—>vE, VooVt (x> +o00), (2)

where the density profile = p(y + v,0), o = a‘lpy(y + v, o) satisfies the Condition A of the Part 1,
nonlinearity f has the formf = (1/2)((r2vx2 + avf)p’, ando > 0 is the Boussinesq parameter. We look for

v = ug + ou with a leading-order termg(x, y; o) = balao(x)er(y; o) whereaqg is the front solution of Eq. 1(6),
and the conjugate flow™ is given by Theorem | 3.1. Note that satisfiesexactcondition (2b) at infinity. We
rewrite equation for the functiom as follows

Oy +Uyy +u=0,o), 3

where the operatar collects nonlinear terms of Eq. (1). Now we introduce the function spaces adapted to the front
problem. LetLg’ﬁ(R) be the weighted Hilbert space of the functior(s) having finite norm

+00
s = [ (&2 + &) ucoa,
o0
with the exponents & o < ag and O< 8 < Bp Wherewp, Bp are decay exponents of approximate solution. Further,
we introduce the weighted Sobolev spa‘ﬁéﬁ (R) of the functions:«(x) which have generalized derivatives up to
the order<k belonging to the classg’ﬂ(R). Finally, we define the class

X* = {u(x.y) | Dy Dju € La([0, 7]; Hy 4(R)) O<m+n<2); u(-,0)=u(-,7)=0}

and the clas¥* = L, ([0, 7]; Hé‘,ﬁ(R)). Weighted Sobolev norms ik* andY* will be denoted ag - ||x and| - |«

consequently. It is easy to verify that0, o) = —o ~1F (uo; 0, 2] (0)) € Y* due to the exponential behaviour of
ao for large|x|. Let B, = {|lu|lx < r} be the open ball in the clas&. For everyr > 0 there exists1(r) such that
the mapy : B, x (0,01) — Y* is a smooth map. We will use some properties of the Fréchet derivgfioé the
operatory and its remaindeg in the Taylor expansion

¢(u,0) =¢(0,0) +¢,(0,0)u+du, o).

Introduce the elemeniy = f1(apsiny) — balaofl(bo siny) e Y* defined by the functiorfy from I(5). In addition,
let M:x* — Y* be the linear differential operator acting by the formula = —(Youy)y + 6u where the
coefficients araio = y + vo andf = py(Yo) + (1 + pg(Yo))vo + A1(bo).

Lemma2.1. Foru,v € B, C X¥(k <1 —2) ando € (0, 01) the estimates

(i) 190,0) —golx < Co,
(ii) 1g},(0,0)u —oMulk < Co?|lull,
(iii) 1¢(u,0) — ¢, )|k < Co?llu — vk

are valid with the constant independent om.
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3. Existence of exact front solutions

The form of a leading-order solution term motivate us to consider the direct sums of cIosed subspaces
xk = x*k @ ox* and Y* = Y* @ Qv* with infinite-dimensional subspaceg’ = {a(x)siny | a € Hk (R)}

and V¥ = X*=2_ The projectionQ can be chose®u(x, y) = u(x, y) — u1(x) siny whereu; is the flrst Fourler
coefficient foru(-, y) with respect to the basisinny}. Looking for the solution:(x, y) = a(x) siny + w(x, y)
with w € 0X* anda e Hk+2(R) we obtain from (3) the system of equations

{(a) OWxx + Wyy +w = Q@(asiny +w, o), @)

(b) a” + p"(ag)a = ¢*(asiny + w, o),

wherep*(u, o) = (6 Yp(u, o) — M(I — Q)u)1, bracketgp)1 mean the first Fourier coefficient gf Consider in
more details the resolvents for the linear operators of the system (4). First of them, the operatsf — Q0 X*,
acts by the formula

Wf(x,y) = wy(x)sinny,
n=2

where the coefficients,, have the Fourier transforms, (§) = —fn (£)/(0&% + n? — 1). Functionsu € L‘;’ﬂ(IR{)
have the analytic Fourier transformigé + in) which belong to the Hardy clas&? for the complex strip
—a < n < B. Therefore one can use the equivalent Hardy nrpmnf = |lug — |a)||L2(R) + la (& + |ﬁ)||L2(R) by
the estimating. Sinc®, (¢)(n > 2) are analytic foa < Im¢ < B, we obtain following estimates.

Lemma3.1. For 0<m +n < 2and0 < o < o2 With 02 < 3/ maxe?, #?) the inequalitiess™/2| D7 DI W f | <
C| f | are satisfied with the consta@tindependent on . In addition, the operato QM : X — QX% (k <1—2)
is bounded uniformly iw: |WQOMulx < Cllullk.

The ordinary differential operatd)2+ p’(ao)] - H k+2(IR<) — Hj k (IR{) appearingin (4) is the Fréchet derivative
of the nonlinear operator I(6) with respect to the front solubonConS|der integral operator

Kf(x) = ar(x) / az (') £ (') i’ + az(x) / a1(x) f ()
0 x

whereas (x) = agp(x), az2(x) = a1(x) fg al_z(x’) dx’, and alsa:” + p”(ag)a=—f if a=Kf.

Lemma 3.2. If the function f € H"ﬂ(R) satisfies the orthogonality conditios, f)r,®) = 0 then Kf e
Hy 52 (R) is valid with the estimaté K Pz < CIF g -

In accordance with this lemma the Fréchet derivative of DJL operator linearized about the approximate front
solution is the Fredholm operator. It has one-dimensional kerngf ispanned by the functiom, = ag(x)siny,

and one-dimensional defect spacé&ih Applying the projector® = ||a1||Z22(R)a1(a1, )L ®) and/ — P to Eq. (4b)
and using the resolvent® andK we reduce the system (4) to equivalent systemufarx* and parametar € R:

@ u=cvoy +U(u,o), (b) w(u,0)=0. (5)
The nonlinear mappiny is defined here by the formula

Uu,o0)=WQ0opu,oc)— KU —-P)I — Q)(o_lgo(u, o) —Mu+MWQo(u, a)),
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the functionaky has the formw(u, o) = (6 Yo, o) — M(I — Q)u, Vox) Lo(2)- Let o3 = min(oy, 02), then the
mapU : B, x (0,03) — X¥(k <I — 3) is bounded uniformly inr. Here the bound depends on thie1-norm of
elementyg being sufficiently smooth, and the(@ 1) term of U vanishes at leading order due to orthogonality
(o, siny),10,-1 = 0. Moreover, this operator has the Lipschitz constant of the ordey Que to Lemmas 2.1 and
3.1, 3.2. Therefore for smail there exists the solution family(c, o) of Eq. (5a).

Finally we consider the bifurcation equation (5b). Note that similar orthogonality condition for a symmetric
solitary waves can be satisfied by the restriction to the classes of even functions. The restriction is impossible
a priori for the front problem since internal bores are not symmetric flows in general case. We use the potentiality
and group invariance of the Dubreil-Jacotin—Long operator in order to remove this obstacle. Namely, the
divergence relation I(3) implies the identity

(F(v; o, )\f(o)), Ux)Lz(.Q) =0 (6)

which is satisfied for alb = ug 4+ ou with arbitraryu € B,. The operatoX = 9, is here the cosymmetry for DJL
equation. We rename @quivariant cosymmetrgince this operator is generated obviously by th@&tonomy of
LagrangianL. More generally [2], if a potential operat@r has invariant Lagrangian under action of Lie gratip
then cosymmetry is given by the Lie algebra of infinitesimal generators of gtofgctorized with respect to
isotropy subgroup of basic solutiaf. Yudovich [3,4] explained by the presence of cosymmetry the branching of
solution families near a known non-cosymmetric solutigXug # 0). In the case under consideration, parametric
solutionu(c, o) appears since the projection 6fug + ocu(c, o), o) onto the defect space vanishes due to (6)
identically inc, so Eq. (5b) is fulfilled automatically.

The following proposition is the main result of the paper.

Theorem 3.3. Let the density profile satisfy Conditiédnof the Partl. Then for each supercritical conjugate flows
of the first mode given by Theordn3.1 and satisfying Conditio8 (Part 1) there exists exact solution of the
problem(1), (2) having the formy = by *ag(x)v* (y; 0) + ou(x, y; o), whereu € X'~2 is uniformly bounded as
o — 0.

Any given number of supercritical fronts of the first mode are obtained for the densiiash that the function
A1(b) has the sequence of monotonically decreasing miniéo) > A1(b1) > --- > A1(b,,) located at the
points O< bg < b1 < - -+ < b, < 1, or the sequence of monotonically increasing minitébg) < A1(b1) <--- <
A1(by) inthecase-1<bg<b1<---<b, <O0.
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