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Abstract

Conditions are given under which the solution mapf a stochastic differential equation on a Riemannian maniféfds
intertwines the differentiation operator d on the path spack @nd that of the canonical Wiener space, @ = 7* dCXOM-
A uniqueness property of d on the path space follows. Results are also given for higher derivatives and covariant dédvatives.
citethisarticle: K.D. Elworthy, X.-M. Li, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Espaces de Gross—Sobolev sur les espaces des chemins : unicité et entrelacement par les applications tttds
donnons des conditions sous lesquelles les applications@'tténnant la solution d'une équation différentielle stochastique
sur une variété Riemanniené entrelace I'opérateur de dérivation d sur I'espace de chemin® dainsi que celui de
I'espace de Wiener canonique, dg &* = 7* dCXOM- Nous en déduisons une propriété d'unicité de d sur I'espace de chemins.
Des résultats sur les dérivées d’'ordre supérieur ainsi que sur les dérivées covariantes sont égalemeRbdonités cet
article: K.D. Elworthy, X.-M. Li, C. R. Acad. Sci. Paris, Ser. | 337 (2003).

0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let M be a compacf® Riemannian manifold with Levi-Civita connectidn Forxg a pointinM andT > 0,
let C,, M be theC* manifold of continuous paths: [0, T] — M with ¢ (0) = xo, equipped with Brownian motion
measureu,,. Its tangent spacé&, C.,M at o is the space of continuous vector fields thalongo vanishing
at 0. Let//s(0): TyxM — T,,M be the stochastic parallel translation alanglefined almost surely. Denote by
W; = Wi (o) : TxuM — T, M the damped parallel translation alomglefined by

d 1 .
E//;%a)w,(v)=—§//;1(0)Rnc§, (Wi(v)), Wo()=v, veT,M
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for Ric? : T, M — T, M given by the Ricci curvature. S&U, V), := [y (W, W, (U, W, W, 1(V))),, dr. Let

‘H, be the Hilbert space given for almostalby H, ={V € T, C,,M | Ww~1(Vv)) is absolutely continuougy = 0

and||V||2 < oo} with the inner product, ), . Note thatH, is the same as the Bismut tangent space, ats used

for example in [5], apart from the choice of inner product; and in the compact manifold and Brownian motion case

considered here we could equally use either inner product (though Corollary 2.3(b) would need modification).
Choose a linear subspace D@iyy) of LZ(CXOM; R) such that

(i) Dom(dy) contains smooth cylindrical functions @h,M and
(ii) Each f € Dom(dy) is Fréchet differentiable, bounded and with differendiflbounded in the standard Finsler
metric onCy, M.

Define dy : Dom(dy) C LZ(CXOM; R) — L2I"H*, to be the restriction of the Fréchet derivativeHo Denote
by d= dc, m the closure of ¢ and byD**(C,,M; R) the domain of d with graph norm.

Consider the classical Wiener spaRe= Co([0, T']; R™) with Wiener measur®, and a stochastic differential
equation:

dx, = X()Ct) o dB[ + A()C[) dr (1)

using canonical Brownian motidiB; (w): 0< ¢t < T, w € 2}, whereX : R" x M — T M is aC? surjective bundle
map andA a smooth vector field. Assume it is a Brownian motionMrand letF*° be its filtration. The solution
starting fromxg shall be denoted by, (w), defined for almost alb € 2. Denote byY (x) : T,y M — R™ the adjoint
of X (x).

It is shown in [7] that such an sde determines a metric connestion M, the LJW connection, and that this
is the Levi-Civita connection if and only X (x)(dY (v)) =0 allv € T, M, x € M. This holds if (1) is the gradient
sde determined by an isometric immersionfinto R™.

There is the Itd maf : 2 — Cy,M,

Li(w) =x(w), 0<r<T, (2

which is measure preserving. Furthermdreis differentiable atw in the direction of the Cameron—Martin
spaceH = Lg’l(IR{’") in the sense of Malliavin calculus, giving a derivativeZfvhich we write asT,,Z: H —
TZ(w)CxoM. It also givesZ* : L2(CyyM; R) — L?(2; R) by I*(f) = f o T.

On £2 we also have the closed operatoedi, on L2(52; R) with associated spad@®1(£2, R). Elements of
D?1(C,,M; R) are characterised by a weak form@tGateaux differentiability in [14] and SB%1(C.,M; R) is
independent of the choice of Ddmy,) provided it satisfies the analogue of (i) and (ii). Eqg M this independence
has not been clear and a particular consequence of the results announced here is that it does hold.

Here we discuss only the case of Brownian motion measure, and Levi-Civita connections for brevity, but the
proofs extend easily to the case of non-degenerate diffusions with constant rank symbols, and are given in detail ir
this context in [9]. For a discussion of intertwining properties of the stochastic development map see [4] (but the
intertwining there is different from that discussed here) and [11]. Denoté¢ the ‘vector bundle’ with fibreg,,
by L2I"H the space ol.2 sections ofH, and byL?I"H* the space of.2 sections of the dual o¥..

This work draws on earlier work with S. Aida and Y. LeJan and was especially stimulated by our contacts with
them, S. Fang and Z.-M. Ma. We are also grateful for comments by S. Fang on a preliminary version.

2. Main results

Theorem 2.1.Assume the LJW connection (f) is the Levi-Civita connection. A real valudd? function f
on Cy,M belongs toDom(dchM) if and only if f o Z € Dom(ds). ConsequentlZ* gives a topological linear
isomorphism oD?(C,,M; R) with the closed subspace Bf1(£2; R) consisting ofF*0 measurable functions.
MoreoverD?1(£2, R) is mapped to itself big{—|F*0}.
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Idea of the proof. From [10], with a more general and corrected proof in [9], we kribiwrestricted to
D2Y(Cy,M; R) has closed range iB>1(£2; R) andZ* dc,,m C deZ*. We can therefore prove the result by show-
ing that if Z*(f) € D?1(£2; R), the domain of d on2, then there exists a sequenigg}° ; in D>1(Cy, M; R)
such thatZ*(f,) — Z*(f) in D>1(£2; R). To do this we shall use the characterisatiorD8f}(£2; R) in terms

of the chaos expansion and wrifé(f) = Z,‘j‘;o It (o) with I () multiple stochastic integrals. Takg (o) =
E{> ;_oZk(ax) | x. = o'} to be the conditional expectations ®f;_g Ik (o). In fact assuming f = 0 we have
T*(fn) = Y_p_1 Jx(ax) for Ji(ay) the iterated integral

T t 1

Jr(ag) ::k!//.../(Olk(tl,...,tk),Kl(xtl)ch@...®KL(xtk)Btk>®Rm, 3
00 0

whereK - (x) :R™ — [kerX (x)]* is the orthogonal projectioFi(x) X (x), cf. [7,2]. Using the fact thaE{|d(K * o
Z)I2|F*0} is in L*®(£2;R) uniformly in ¢, as in [2] we obtain the estimat®’, ”d(Jk(O‘k))”iz(:z S
const Y, kk!llax||> which is finite, by Proposition 1.2.1 of Nualart [12], I f belongs toD?1(£2; R). This
impliesZ*(f,) — Z*(f) in D*}(2, R).

On the other hand takg, = fé //;1X(xs) dB;, the anti-development of to see

T ty to

fn(o)zZk!//.../(ak(tl,...,tk),Y(xtl)//tl(a.)détl®...®Y(xtk)//tk(a.)dé,k)®R,,,.
k=150 0

The fact thatf, is in Dom(dc, m) is essentially standard, e.g., see Cruzeiro-Malliavin [4] or the Appendix in
Aida [1]. For a gradient stochastic differential equation (1) determined by an isonietic— R™ it is especially
clear since thek *(x,) dB, can be replaced byid — %Aj (xp)dt forx; = j(x;) e R™. O

Corollary 2.2. Dom(dc, ») is independent of the choice Dbm(dy,) provided that it satisfieg), (ii).
Corollary 2.3. (a) Z* dcxoM =dpZ*.

(b) There is equality of the following two formﬁCXOM |degm f12 Aty = [ IE{dQZ*(f)|F*0}|>dP and there
is a constantc with fcxo wlde m fI2duyg < [o lde* f12dP < c fcxo wde m fI2 iy, f e D*HCyyM;R),
cf.[6,13].

Using the characterisation of Dadiv) for 2 in [12] (Proposition 1.3.1), Corollary 2.2 can be strengthened to:

Theorem 2.4.There is a unique closed operatdifrom LZ(CXOM; R) to L2I"H* such that(i) d agrees withdy,
on smooth cylindrical functiongii) Dom(d*) contains all smooth cylindrical one forms.

2.1. Higher derivatives and covariant derivatives

The main result extends to covariant differentiation using the damped Markovian connection introduced in [3],
and to higher derivatives. Here we can only state some sample results. Details are i6'[@]alEeparable Hilbert
space we define g d” : Dom(d®) c LZ(CXOM; G) — L?I'(H* ® G) to be the closure of the derivative naturally
defined with domain the linear span{df : C;,M — R | F(c) = f(0)g somef € Dom(dy), g € G}. Then the
canonical isometry oLZ(CxoM; R) ® G with LZ(CxoM; G) maps Dontd) ® G onto Domd®) so that Theorem 2.1
clearly holds forG-valued functions.

By an<-1-form we mean a section 6{*. DefineW : Dom(W) C L2I"H* — L?I"(H @ H*) by

) By D
Wy (u) = d[qb(W. / WX (evs)(—) ds>i|(v) <Y(a.)<au>>, u,v € Hey,
0
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Dom(V) = {qs: ¢<W./WS_1X(U(S))<d—i —)ds) is in Dom(d)}.
0

With this domainW¥ is a closed operator, and is independent of the choice of the sde (1) provided it induces the
Levi-Civita connection. From Theorem 2.1 and results in [8] on the conditional expectation Bf tlegivative of
an Itd map we have

Corollary 2.5. If ¢ € L2I"H* theng € Dom(W) if and only ifZ*(¢) hasE{Z*(¢)|F*°} in Dom(d).

Here the pull backl*(¢) = ¢ o T is defined as a limit ir.2 of (¢, o TZ) where thep, are cylindrical and
converge tap, [9,10]. It can be treated as a stochastic integral.

We can extend the definition & to otherH-tensors and define Sobolev spaE@é‘(CxOM; G)fork=2,3,...
in the usual way. These depend only on the Riemannian structude of

Definition 2.1. Let DZ}’-}O (£2; G) be the subset db?1(£2; G) whose elements ar&*0-measurable. Inductively
D?gﬁo(.@; G) consists of F such that (a)F € Dfr_’}o(.@; G) and (b) E{deF| F*}: 2 — H* ® G is in

D%, (2: H*® G), furnished with the norm F || 7o 2.4 := (3-5_o [(dg o E{— | ]-"XO})J'F@Z(QAH*@G))UZ.

Corollary 2.6. An element off € L?(Cy,M; R) is in D**(C,,M; R) if and only if f o Z is in the domain of
the k-fold iterate of the operatal, o E{—|F*0}. ConsequentlZ* restricts to give a linear isomorphism from
D2k (Cy,M; R) ontoD%, (2: R).
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