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Abstract

Conditions are given under which the solution mapI of a stochastic differential equation on a Riemannian manifoldM

intertwines the differentiation operator d on the path space ofM and that of the canonical Wiener space, dΩI∗ = I∗ dCx0M
.

A uniqueness property of d on the path space follows. Results are also given for higher derivatives and covariant derivTo
cite this article: K.D. Elworthy, X.-M. Li, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Espaces de Gross–Sobolev sur les espaces des chemins : unicité et entrelacement par les applications d’Itô.Nous
donnons des conditions sous lesquelles les applications d’ItôI donnant la solution d’une équation différentielle stochasti
sur une variété RiemannienneM entrelace l’opérateur de dérivation d sur l’espace de chemins deM , ainsi que celui de
l’espace de Wiener canonique, de dΩI∗ = I∗ dCx0M

. Nous en déduisons une propriété d’unicité de d sur l’espace de che
Des résultats sur les dérivées d’ordre supérieur ainsi que sur les dérivées covariantes sont également donnés.Pour citer cet
article : K.D. Elworthy, X.-M. Li, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

LetM be a compactC∞ Riemannian manifold with Levi-Civita connection∇. Forx0 a point inM andT > 0,
letCx0M be theC∞ manifold of continuous pathsσ : [0, T ] →M with σ(0)= x0, equipped with Brownian motio
measureµx0. Its tangent spaceTσCx0M at σ is the space of continuous vector fields onM alongσ vanishing
at 0. Let//s(σ ) :Tx0M → TσsM be the stochastic parallel translation alongσ defined almost surely. Denote b
Wt ≡Wt(σ) :Tx0M → TσtM the damped parallel translation alongσ defined by

d

dt
//−1
t (σ )Wt (v)= −1

2
//−1
t (σ )Ric#

σt

(
Wt(v)

)
, W0(v)= v, v ∈ Tx0M
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for Ric#
x :TxM → TxM given by the Ricci curvature. Set〈U,V 〉σ := ∫ T

0 〈Wt
d
dt W

−1
t (Ut ),Wt

d
dt W

−1
t (Vt )〉σt dt . Let

Hσ be the Hilbert space given for almost allσ byHσ = {V ∈ TσCx0M |W−1· (V·) is absolutely continuous,V0 = 0
and‖V ‖2

σ < ∞} with the inner product〈, 〉σ . Note thatHσ is the same as the Bismut tangent space atσ , as used
for example in [5], apart from the choice of inner product; and in the compact manifold and Brownian motio
considered here we could equally use either inner product (though Corollary 2.3(b) would need modificati

Choose a linear subspace Dom(dH) of L2(Cx0M;R) such that

(i) Dom(dH) contains smooth cylindrical functions onCx0M and
(ii) Eachf ∈ Dom(dH) is Fréchet differentiable, bounded and with differentialdf bounded in the standard Finsl

metric onCx0M.

Define dH : Dom(dH)⊂ L2(Cx0M;R)→ L2ΓH∗, to be the restriction of the Fréchet derivative toH. Denote
by d≡ dCx0M

the closure of dH and byD
2,1(Cx0M;R) the domain of d with graph norm.

Consider the classical Wiener spaceΩ ≡ C0([0, T ];R
m) with Wiener measureP, and a stochastic differentia

equation:

dxt =X(xt ) ◦ dBt +A(xt )dt (1)

using canonical Brownian motion{Bt (ω): 0� t � T , ω ∈Ω}, whereX :Rm×M → TM is aC2 surjective bundle
map andA a smooth vector field. Assume it is a Brownian motion onM and letFx0· be its filtration. The solution
starting fromx0 shall be denoted byxt (ω), defined for almost allω ∈Ω . Denote byY (x) :TxM → R

m the adjoint
of X(x).

It is shown in [7] that such an sde determines a metric connection∇̆ onM, the LJW connection, and that th
is the Levi-Civita connection if and only ifX(x)(dY (v))= 0 all v ∈ TxM, x ∈M. This holds if (1) is the gradien
sde determined by an isometric immersion ofM into R

m.
There is the Itô mapI :Ω → Cx0M,

It (ω)= xt(ω), 0 � t � T , (2)

which is measure preserving. FurthermoreIt is differentiable atω in the direction of the Cameron–Mart
spaceH = L

2,1
0 (Rm) in the sense of Malliavin calculus, giving a derivative ofI which we write asTωI :H →

TI(ω)Cx0M. It also givesI∗ :L2(Cx0M;R)→L2(Ω;R) by I∗(f )= f ◦ I.
On Ω we also have the closed operator d≡ dΩ on L2(Ω;R) with associated spaceD2,1(Ω,R). Elements of

D
2,1(Cx0M;R) are characterised by a weak form ofH -Gateaux differentiability in [14] and soD2,1(Cx0M;R) is

independent of the choice of Dom(dH) provided it satisfies the analogue of (i) and (ii). ForCx0M this independenc
has not been clear and a particular consequence of the results announced here is that it does hold.

Here we discuss only the case of Brownian motion measure, and Levi-Civita connections for brevity,
proofs extend easily to the case of non-degenerate diffusions with constant rank symbols, and are given in
this context in [9]. For a discussion of intertwining properties of the stochastic development map see [4]
intertwining there is different from that discussed here) and [11]. Denote byH the ‘vector bundle’ with fibresHσ ,
byL2ΓH the space ofL2 sections ofH, and byL2ΓH∗ the space ofL2 sections of the dual ofH.

This work draws on earlier work with S. Aida and Y. LeJan and was especially stimulated by our contac
them, S. Fang and Z.-M. Ma. We are also grateful for comments by S. Fang on a preliminary version.

2. Main results

Theorem 2.1.Assume the LJW connection of(1) is the Levi-Civita connection. A real valuedL2 function f
on Cx0M belongs toDom(dCx0M

) if and only if f ◦ I ∈ Dom(dΩ). ConsequentlyI∗ gives a topological linear

isomorphism ofD2,1(Cx0M;R) with the closed subspace ofD
2,1(Ω;R) consisting ofFx0 measurable functions

MoreoverD2,1(Ω,R) is mapped to itself byE{−|Fx0}.
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Idea of the proof. From [10], with a more general and corrected proof in [9], we knowI∗ restricted to
D

2,1(Cx0M;R) has closed range inD2,1(Ω;R) andI∗ dCx0M
⊂ dΩI∗. We can therefore prove the result by sho

ing that if I∗(f ) ∈ D
2,1(Ω;R), the domain of d onΩ , then there exists a sequence{fn}∞n=1 in D

2,1(Cx0M;R)

such thatI∗(fn) → I∗(f ) in D
2,1(Ω;R). To do this we shall use the characterisation ofD

2,1(Ω;R) in terms
of the chaos expansion and writeI∗(f ) = ∑∞

k=0 Ik(αk) with Ik(αk) multiple stochastic integrals. Takefn(σ ) =
E{∑n

k=0Ik(αk) | x· = σ } to be the conditional expectations of
∑n

k=0 Ik(αk). In fact assumingEf = 0 we have
I∗(fn)= ∑n

k=1Jk(αk) for Jk(αk) the iterated integral

Jk(αk) := k!
T∫

0

tk∫
0

. . .

t2∫
0

〈
αk(t1, . . . , tk),K

⊥(xt1)dBt1 ⊗ · · · ⊗K⊥(xtk )Btk

〉
⊗Rm, (3)

whereK⊥(x) :Rm → [kerX(x)]⊥ is the orthogonal projectionY (x)X(x), cf. [7,2]. Using the fact thatE{|d(K⊥ ◦
It )|2|Fx0} is in L∞(Ω;R) uniformly in t , as in [2] we obtain the estimate

∑
k ‖d(Jk(αk))‖2

L2(Ω,H ∗) �
const.

∑
k kk!‖αk‖2 which is finite, by Proposition 1.2.1 of Nualart [12], ifI∗f belongs toD

2,1(Ω;R). This
impliesI∗(fn)→ I∗(f ) in D

2,1(Ω,R).
On the other hand takĕBt = ∫ t

0 //
−1
s X(xs)dBs , the anti-development ofx· to see

fn(σ )=
n∑

k=1

k!
T∫

0

tk∫
0

. . .

t2∫
0

〈
αk(t1, . . . , tk), Y (xt1)//t1(σ·)dB̆t1 ⊗ · · · ⊗ Y (xtk )//tk (σ·)dB̆tk

〉
⊗Rm.

The fact thatfn is in Dom(dCx0M
) is essentially standard, e.g., see Cruzeiro–Malliavin [4] or the Append

Aida [1]. For a gradient stochastic differential equation (1) determined by an isometricj :M → R
m it is especially

clear since thenK⊥(xt)dBt can be replaced by dx̃t − 1
2(j(xt )dt for x̃t = j (xt ) ∈ R

m. ✷
Corollary 2.2. Dom(dCx0M

) is independent of the choice ofDom(dH) provided that it satisfies(i), (ii) .

Corollary 2.3. (a)I∗ dCx0M
= dΩI∗.

(b) There is equality of the following two forms:
∫
Cx0M

|dCx0M
f |2 dµx0 = ∫

Ω |E{dΩI∗(f )|Fx0}|2 dP and there

is a constantc with
∫
Cx0M

|dCx0M
f |2 dµx0 �

∫
Ω

|dΩI∗f |2 dP � c
∫
Cx0M

|dCx0M
f |2 dµx0, f ∈ D

2,1(Cx0M;R),

cf. [6,13].

Using the characterisation of Dom(div) for Ω in [12] (Proposition 1.3.1), Corollary 2.2 can be strengthened

Theorem 2.4.There is a unique closed operatord fromL2(Cx0M;R) to L2ΓH∗ such that(i) d agrees withdH
on smooth cylindrical functions; (ii) Dom(d∗) contains all smooth cylindrical one forms.

2.1. Higher derivatives and covariant derivatives

The main result extends to covariant differentiation using the damped Markovian connection introduce
and to higher derivatives. Here we can only state some sample results. Details are in [9]. IfG is a separable Hilber
space we define d≡ dG : Dom(dG)⊂ L2(Cx0M;G)→ L2Γ (H∗ ⊗G) to be the closure of the derivative natura
defined with domain the linear span of{F :Cx0M → R | F(σ) = f (σ)g somef ∈ Dom(dH), g ∈ G}. Then the
canonical isometry ofL2(Cx0M;R)⊗Gwith L2(Cx0M;G)maps Dom(d)⊗G onto Dom(dG) so that Theorem 2.1
clearly holds forG-valued functions.

By anH-1-form we mean a section ofH∗· . Define∇∇ : Dom(∇∇)⊂ L2ΓH∗ →L2Γ (H⊗H∗) by

∇∇vφ(u)= d

[
φ

(
W·

·∫
W−1

s X(evs)(−)ds

)]
(v)

(
Y (σ·)

(
D

d·u
))

, u, v ∈Hσ ,
0
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25.
Dom(∇∇)=
{
φ: φ

(
W·

·∫
0

W−1
s X

(
σ(s)

)( d

ds
−

)
ds

)
is in Dom(d)

}
.

With this domain∇∇ is a closed operator, and is independent of the choice of the sde (1) provided it indu
Levi-Civita connection. From Theorem 2.1 and results in [8] on the conditional expectation of theH -derivative of
an Itô map we have

Corollary 2.5. If φ ∈ L2ΓH∗ thenφ ∈ Dom(∇∇) if and only ifI∗(φ) hasE{I∗(φ)|Fx0} in Dom(dΩ ).

Here the pull backI∗(φ) = φ ◦ T I is defined as a limit inL2 of (φn ◦ T I) where theφn are cylindrical and
converge toφ, [9,10]. It can be treated as a stochastic integral.

We can extend the definition of∇∇ to otherH-tensors and define Sobolev spacesD
2,k(Cx0M;G) for k = 2,3, . . .

in the usual way. These depend only on the Riemannian structure ofM.

Definition 2.1. Let D
2,1
Fx0 (Ω;G) be the subset ofD2,1(Ω;G) whose elements areFx0-measurable. Inductivel

D
2,k
Fx0 (Ω;G) consists ofF such that (a)F ∈ D

2,1
Fx0 (Ω;G) and (b) E{dΩF | Fx0} : Ω → H ∗ ⊗ G is in

D
2,k−1
Fx0 (Ω;H ∗ ⊗G), furnished with the norm‖F‖Fx0 ,2,k := (∑k

j=0 |(dΩ ◦ E{− |Fx0})jF |2
L2(Ω;H ∗⊗G)

)1/2.

Corollary 2.6. An element off ∈ L2(Cx0M;R) is in D
2,k(Cx0M;R) if and only if f ◦ I is in the domain of

the k-fold iterate of the operatordΩ ◦ E{−|Fx0}. ConsequentlyI∗ restricts to give a linear isomorphism fro
D

2,k(Cx0M;R) ontoD
2,k
Fx0 (Ω;R).
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